CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


Article << Previous     |     Next >>   Contents Vol 28(3)

Mitochondrial activity during pre-maturational culture in in vitro-grown bovine oocytes is related to maturational and developmental competences

Weiping Huang A, Sung-Sik Kang A, Katsuhisa Nagai A, Yojiro Yanagawa A, Yoshiyuki Takahashi A and Masashi Nagano A B

A Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
B Corresponding author. Email: mnaga@vetmed.hokudai.ac.jp

Reproduction, Fertility and Development 28(3) 349-356 http://dx.doi.org/10.1071/RD14023
Submitted: 21 January 2014  Accepted: 5 June 2014   Published: 17 July 2014

PDF (310 KB) $25
 Export Citation

The objective of this study was to investigate the dynamics of mitochondrial activity in in vitro-grown (IVG) bovine oocytes during pre-maturational culture (pre-IVM) and its relationship to their developmental competence upon being subjected to different pre-IVM durations. After 12-day IVG culture, oocytes were cultured for 0, 10 or 20 h with 3-isobutyl-1-methylxanthine (IBMX) as pre-IVM. Mitochondrial activity in IVG oocytes after 10 h pre-IVM was the highest among all the pre-IVM durations (P < 0.05). In addition, cleavage (79.4%) and blastocyst rates (38.9%) of embryos derived from IVG oocytes with 10 h pre-IVM were higher than those with 20 h pre-IVM (63.0 and 25.8%, respectively; P < 0.05) and similar to those of in vivo-grown oocytes (82.7 and 36.7%, respectively). To confirm the developmental ability of IVG oocytes with 10 h pre-IVM beyond the blastocyst stage in vivo, embryo transfer was attempted. Transferred embryos developed to the elongated embryonic stage (63.6%, 7/11) in the recipient uterus at Day 16 of oestrus, and a male calf was delivered (50%, 1/2). In conclusion, it was indicated that the mitochondrial activity of bovine IVG oocytes peaked at 10 h pre-IVM and was closely correlated with the nuclear maturation and developmental competences of IVG oocytes.

Additional keywords: early antral follicle, embryo transfer, IVG, mitochondria, ROS.


Aharoni, D., Dantes, A., Oren, M., and Amsterdam, A. (1995). cAMP-mediated signals as determinants for apoptosis in primary granulosa cells. Exp. Cell Res. 218, 271–282.
CrossRef | CAS | PubMed |

Behl, R., and Pandey, R. S. (2002). FSH-induced stimulation of catalase activity in goat granulosa cells in vitro. Anim. Reprod. Sci. 70, 215–221.
CrossRef | CAS | PubMed |

Betteridge, K. J., Eaglesome, M. D., Randall, G. C., and Mitchell, D. (1980). Collection, description and transfer of embryos from cattle 10–16 days after oestrus. J. Reprod. Fertil. 59, 205–216.
CrossRef | CAS | PubMed |

Brackett, B. G., and Oliphant, G. (1975). Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12, 260–274.
CrossRef | CAS | PubMed |

Carlucci, A., Lignitto, L., and Feliciello, A. (2008). Control of mitochondria dynamics and oxidative metabolism by cAMP, AKAPs and the proteasome. Trends Cell Biol. 18, 604–613.
CrossRef | CAS | PubMed |

Cetica, P. D., Pintos, L. N., Dalvit, G. C., and Beconi, M. T. (2001). Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life 51, 57–64.
CrossRef | CAS | PubMed |

Egerszegi, I., Alm, H., Ratky, J., Heleil, B., Brussow, K. P., and Torner, H. (2010). Meiotic progression, mitochondrial features and fertilisation characteristics of porcine oocytes with different G6PDH activities. Reprod. Fertil. Dev. 22, 830–838.
CrossRef | CAS | PubMed |

Eppig, J. J., and Downs, S. M. (1987). The effect of hypoxanthine on mouse oocyte growth and development in vitro: maintenance of meiotic arrest and gonadotrophin-induced oocyte maturation. Dev. Biol. 119, 313–321.
CrossRef | CAS | PubMed |

Fleury, C., Mignotte, B., and Vayssiere, J. L. (2002). Mitochondrial reactive oxygen species in cell-death signalling. Biochimie 84, 131–141.
CrossRef | CAS | PubMed |

Ge, H., Tollner, T. L., Hu, Z., Dai, M., Li, X., Guan, H., Shan, D., Zhang, X., Lv, J., Huang, C., and Dong, Q. (2012). The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol. Reprod. Dev. 79, 392–401.
CrossRef | CAS | PubMed |

Gilchrist, R. B., and Thompson, J. G. (2007). Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67, 6–15.
CrossRef | PubMed |

Gustafsson, H., and Ploen, L. (1986). The morphology of 16- and 17-day-old bovine blastocysts from virgin and repeat-breeder heifers. Anat. Histol. Embryol. 15, 277–287.
CrossRef | CAS | PubMed |

Harada, M., Miyano, T., Matsumura, K., Osaki, S., Miyake, M., and Kato, S. (1997). Bovine oocytes from early antral follicles grow to meiotic competence in vitro: effect of FSH and hypoxanthine. Theriogenology 48, 743–755.
CrossRef | CAS | PubMed |

Hashimoto, S., Minami, N., Yamada, M., and Imai, H. (2000). Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilisation: relevance to intracellular reactive oxygen species and glutathione contents. Mol. Reprod. Dev. 56, 520–526.
CrossRef | CAS | PubMed |

Hashimoto, S., Minami, N., Takakura, R., and Imai, H. (2002). Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro. Biol. Reprod. 66, 1696–1701.
CrossRef | CAS | PubMed |

Hirao, Y., Itoh, T., Shimizu, M., Iga, K., Aoyagi, K., Kobayashi, M., Kacchi, M., Hoshi, H., and Takenouchi, N. (2004). In vitro growth and development of bovine oocyte–granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biol. Reprod. 70, 83–91.
CrossRef | CAS | PubMed |

Huang, W., Nagano, M., Kang, S. S., Yanagawa, Y., and Takahashi, Y. (2013). Effects of in vitro growth culture duration and prematuration culture on maturational and developmental competences of bovine oocytes derived from early antral follicles. Theriogenology 80, 793–799.
CrossRef | PubMed |

Huang, W., Nagano, M., Kang, S. S., Yanagawa, Y., and Takahashi, Y. (2014). Prematurational culture with 3-isobutyl-1-methylxanthine synchronises meiotic progression of the germinal vesicle stage and improves nuclear maturation and embryonic development in in vitro-grown bovine oocytes. J. Reprod. Dev. 60, 9–13.
CrossRef | CAS | PubMed |

Insel, P. A., Zhang, L., Murray, F., Yokouchi, H., and Zambon, A. C. (2012). Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol. (Oxf.) 204, 277–287.
CrossRef | CAS | PubMed |

Kanaya, H., Hashimoto, S., Teramura, T., Morimoto, Y., Matsumoto, K., Saeki, K., Iritani, A., and Hosoi, Y. (2007). Mitochondrial dysfunction of in vitro-grown rabbit oocytes results in preimplantation embryo arrest after activation. J. Reprod. Dev. 53, 631–637.
CrossRef | CAS | PubMed |

Katagiri, S., and Takahashi, Y. (2006). Potential relationship between normalisation of endometrial epidermal growth factor profile and restoration of fertility in repeat-breeder cows. Anim. Reprod. Sci. 95, 54–66.
CrossRef | CAS | PubMed |

Koyama, K., Kang, S. S., Huang, W., Yanagawa, Y., Takahashi, Y., and Nagano, M. (2014). Ageing-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation. J. Reprod. Dev. 60, 136–142.
CrossRef | CAS | PubMed |

Lonergan, P., Monaghan, P., Rizos, D., Boland, M. P., and Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilisation and culture in vitro. Mol. Reprod. Dev. 37, 48–53.
CrossRef | CAS | PubMed |

Ly, J. D., Grubb, D. R., and Lawen, A. (2003). The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis 8, 115–128.
CrossRef | CAS | PubMed |

Machatkova, M., Jeseta, M., Hulinska, P., Knitlova, D., Nemcova, L., and Kanka, J. (2012). Characteristics of bovine oocytes with different meiotic competence in terms of their mitochondrial status and expression of nuclear-encoded factors. Reprod. Domest. Anim. 47, 806–814.
CrossRef | CAS | PubMed |

Nagano, M., Katagiri, S., and Takahashi, Y. (2006). ATP content and maturational/developmental ability of bovine oocytes with various cytoplasmic morphologies. Zygote 14, 299–304.
CrossRef | CAS | PubMed |

Nagano, M., Kang, S. S., Koyama, K., Huang, W., Yanagawa, Y., and Takahashi, Y. (2013). In vitro maturation system for individual culture of bovine oocytes using micro-volume multi-well plate. Jpn. J. Vet. Res. 61, 149–154.
| PubMed |

Papa, S. (2006). Does cAMP play a part in the regulation of the mitochondrial electron transport chain in mammalian cells? IUBMB Life 58, 173–175.
CrossRef | CAS | PubMed |

Romek, M., Gajda, B., Rolka, M., and Smorąg, Z. (2011). Mitochondrial activity and morphology in developing porcine oocytes and pre-implantation non-cultured and cultured embryos. Reprod. Domest. Anim. 46, 471–480.
CrossRef | CAS | PubMed |

Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D., Papp, A. B., Sato, E., and Nagai, T. (2003). Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11, 199–206.
CrossRef | CAS | PubMed |

Takahashi, Y., and First, N. L. (1992). In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37, 963–978.
CrossRef | CAS | PubMed |

Takahashi, Y., and Kanagawa, H. (1998). Effect of oxygen concentration in the gas atmosphere during in vitro insemination of bovine oocytes on the subsequent embryonic development in vitro. J. Vet. Med. Sci. 60, 365–367.
CrossRef | CAS | PubMed |

Takahashi, Y., Hishinuma, M., Matsui, M., Tanaka, H., and Kanagawa, H. (1996). Development of in vitro matured/fertilised bovine embryos in a chemically defined medium: influence of oxygen concentration in the gas atmosphere. J. Vet. Med. Sci. 58, 897–902.
CrossRef | CAS | PubMed |

Tamassia, M., Nuttinck, F., May-Panloup, P., Reynier, P., Heyman, Y., Charpigny, G., Stojkovic, M., Hiendleder, S., Renard, J. P., and Chastant-Maillard, S. (2004). In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA and mitochondrial DNA haplogroup. Biol. Reprod. 71, 697–704.
CrossRef | CAS | PubMed |

Tarazona, A. M., Rodriguez, J. I., Restrepo, L. F., and Olivera-Angel, M. (2006). Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reprod. Domest. Anim. 41, 5–11.
CrossRef | CAS | PubMed |

Thomas, R. E., Armstrong, D. T., and Gilchrist, R. B. (2002). Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev. Biol. 244, 215–225.
CrossRef | CAS | PubMed |

Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11, 797–813.
CrossRef | CAS | PubMed |

Zeng, H. T., Ren, Z., Guzman, L., Wang, X., Sutton-McDowall, M. L., Ritter, L. J., De Vos, M., Smitz, J., Thompson, J. G., and Gilchrist, R. B. (2013). Heparin and cAMP modulators interact during pre-in vitro maturation to affect mouse and human oocyte meiosis and developmental competence. Hum. Reprod. 28, 1536–1545.
CrossRef | CAS | PubMed |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016