CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>   Contents Vol 22(1)

102 EFFECT OF DEMECOLCINE PRE-TREATMENT ON VIABILITY, TIMING OF FIRST POLAR BODY EXTRUSION, SPINDLE CONFIGURATION, AND SUBSEQUENT DEVELOPMENT OF OVINE OOCYTES VITRIFIED AT GERMINAL VESICLE STAGE

A. R. Moawad A, J. Zhu A, I. Choi A, K. H. S. Campbell A

School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
 
 Export Citation
 Print
  


Abstract

Oocyte cryopreservation is a potentially valuable way of preserving female germ cells. However, to date the reported developmental competence of cryopreserved oocytes is low. The objectives of this study were to investigate the effects of demecolcine pretreatment on viability, timing of the first polar body extrusion (PBI), spindle, chromatin organization, and in vitro embryo development of ovine vitrified germinal vesicle (GV) oocytes after in vitro fertilization (IVF) and parthenogenetic activation. Cumulus-oocyte complexes (COC) aspirated from ovine ovaries collected at slaughter were selected and randomly divided into 3 groups: (1) untreated (in vitro matured, IVM) as a control, (2) vitrified (Moawad AR et al. 2009 Reprod. Fertil. Dev. 21, 135 abst), and (3) deme + vitrified (oocytes were incubated with 0.1 μg mL-1 demecolcine for 20 min before vitrification). After vitrification COC were thawed and matured in vitro for 24 h. Following IVM, oocytes from 3 groups were subsequently subjected to (1) immunostaining, (2) IVF, or (3) activation. Presumptive zygotes were cultured in vitro in SOF media for 7 days. Data were analyzed using chisquare and t-test. No significant differences (P > 0.05) were observed in survival rates between deme + vitrified (90.8%, 324/357) and vitrified (87.2%, 211/242). However, the numbers of oocytes with PBI in two vitrified groups at 18 h (20.4 and 8.5 v. 47.1%) and 24 h post IVM (51 and 43.2 v. 88.5%) were significantly lower (P < 0.01) than those in the control. Percentage of normal spindle and chromatin configuration in the two vitrified groups also significantly decreased (P < 0.05) compared with those in the control (42.5 and 41.8 v. 76.5%), whereas missing spindle in the 2 vitrified groups significantly increased (P < 0.001) compared with the controls (47.5 and 32.7 v. 3.9%). Following IVF (pi), cleavage rates at 24.48 hpi and morula development (5 days pi) were significantly lower (P < 0.001) in deme + vitrified (6.1, 43.1, and 28.5%) and vitrified groups (3.3, 30.1, and 22.9%) than control (50.4, 82.4, and 46.4%). Blastocyst development in deme + vitrified (9.8%) and control (33.6%) was significantly higher (P < 0.01) than in vitrified group (1.3%). Hatched blastocysts were observed only in deme + vitrified and control groups (4.9 v. 12.8%). In addition, post activation (pa) cleavage rates in deme + vitrified (10.3 v. 40.7%) and control (52.5 v. 76.7%) at 24 and 48 hpa were significantly higher (P < 0.05) than those in the vitrified group. Blastocyst development in deme + vitrified (4.8%) was higher than that in the vitrified group (1.8%), but not significant (P > 0.05); however, these values were still significantly lower (P < 0.001) than those in the control (24.2%). No significant differences were observed in total cell numbers per blastocyst between all the groups. Taken together, these results suggest that pretreatment of oocytes with demecolcine before vitrification could improve the developmental competence of ovine vitrified-thawed GV-stage oocytes.

   
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014