CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>   Contents Vol 22(1)

385 ESTROGENIC EVALUATION OF ALKYPHENOLS IN MOUSE EMBRYONIC STEM CELLS

E. M. Jung A, E. B. Jeung A

Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea, Facultad Agronomia, Montevideo, Uruguay
 
 Export Citation
 Print
  


Abstract

Xenoestrogens can have adverse effects on the reproductive and immune systems; for example, 4-tert-octylphenol (OP) and 4-nonylphenol (NP) can have estrogenic effects in target cells. In this study, we investigated the effects of xenoestrogens on the expression of undifferentiation and differentiation markers in mouse embryonic stem (ES) cells, which are important mediators of the differentiation of ES cells into cardiomyocytes. The ES cells were treated with 17β-estradiol or OP and NP in a time-dependent manner (for 1, 2, or 3 days), and embryoid bodies (EB) cells were given the same treatment for 5, 8, 12, or 16 days. The mRNA expressions of undifferentiation markers (Oct-4, Sox2, Zfp206, and Rex-1) and cardiomyocyte differentiation markers (α-MHC, β-MHC, ANF, and MLC-2V) were determined by semi- and quantitative real-time PCR. Treatment with E2 induced an increase (1.3- to 4.6-fold) in Oct-4 expression at the transcriptional level in a dose- and time-dependent manner. However, no difference was observed in the expression of Sox2, Zfp206, or Rex-1 genes in ES cells, suggesting that E2 might be an Oct-4 enhancer in ES cells. However, induction of Oct-4 expression by E2 might result from changes in the Oct-4 promoter methylation pattern rather than from other regulatory mechanisms. We also found that cardiomyocyte differentiation markers were differentially expressed in response to xenoestrogens in EB cells. Taken together, these results suggest that xenoestrogens might play a role as a positive regulator of the undifferentiation process in mouse ES and EB cells and might be involved in the maintenance and differentiation of mouse ES cells.

   
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015