CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>   Contents Vol 22(1)

397 DERIVATION OF NEURAL STEM CELLS FROM PORCINE EPIBLAST CELLS

M. A. Rasmussen A, V. J. Hall A, P. Hyttel A

Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Bülowsvej 17 DK-1870 Frederiksberg C, Denmark
 
 Export Citation
 Print
  


Abstract

The use of neural stem cells (NSC) has gained increased attention as a means of treating neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. However, before regenerative treatment of humans can be undertaken, safety studies of NSC using animal models are required. The mouse has been the model of choice so far; however, testing in larger mammals such as the pig is essential. The aim of this study was to derive NSC from porcine epiblast cells and to analyze these cells using neural stem cell markers. A total of 47 epiblasts were isolated from E9 porcine embryos and grown on mouse embryonic fibroblast cells in a porcine embryonic stem cell medium. After 5 days, 23 outgrowth colonies had formed (49%). Based on morphology, 8 outgrowth colonies were selected and cut into 63 smaller pieces, which were transferred to MS5 stromal cells in a serum replacement medium, and after an additional 12 days, rosette structures had formed. These structures were transferred to Matrigel-coated dishes in a neural stem cell medium containing EGF and FGF. Under such conditions, bipolar cells containing large nuclei and several nucleoli grew out from the rosettes. The bipolar cells have been expanded for more than 8 passages without any change in morphology or growth rate, and upon high-density culture, the cells spontaneously form floating neurospheres. Stainings revealed that the cells expressed the neural stem cell markers Nestin (100%), Sox2 (100%), Pax6 (100%), and Vimentin (100%), as well as the proliferation marker Ki67 (54%). The same markers were found to be expressed in the lateral ventricles of the developing porcine brain, a location known to have high neurogenic activity. When growth factors were withdrawn from the culture medium, a higher proportion of TujI expressing cells were observed, especially when cells were cultured as neurospheres. We conclude that it is possible to derive presumptive NSC from porcine epiblast cells and that these express the same markers as reported for human NSC. Further studies are required to determine if the cells can be cultured long term and differentiate into various neuronal and glial cell types.

   
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014