CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Now Online

Land Resources Surveys


Article << Previous     |     Next >>   Contents Vol 32(5)

Soil structure and carbon cycling

A Golchin, JM Oades, JO Skjemstad and P Clarke

Australian Journal of Soil Research 32(5) 1043 - 1068
Published: 1994


Samples from the surface horizons of six virgin soils were collected and separated into density fractions. Based on the spatial distribution of organic materials within the mineral matrix of soil, the soil organic matter (SOM) contained in various density fractions was classified as: (a) free particulate OM, (b) occluded particulate OM, and (c) colloidal or clay-associated OM. The compositional differences noted among these three components of SOM were used to describe the changes that OM undergoes during decomposition when it enters the soil, is enveloped in aggregates and eventually is incorporated into microbial biomass and metabolites and associated with clay minerals. The occluded organic materials, released as a result of aggregate disruption, were in various stages of decomposition and had different degrees of association with mineral particles. Changes in the degree of association of occluded organic materials and mineral particles with decomposition are discussed and form the basis of a model which illustrates the simultaneous dynamics of microaggregates and their organic cores. This model indicates a major role for carbohydrate-rich plant debris in formation and stabilization of microaggregates. Keywords: Soil Organic Matter; Soil Structure; Carbon Cycling; 13C CP MAS NMR; Density Fractionation; Scanning Electron Microscopy; Humic Acid;

Full text doi:10.1071/SR9941043

© CSIRO 1994

blank image
Subscriber Login

PDF (1.1 MB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014