Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm

Allison J. Gardner A and Janice P. Evans A B

A Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.

B Corresponding author. Email: jpevans@jhsph.edu

Reproduction, Fertility and Development 18(2) 53-61 https://doi.org/10.1071/RD05122
Submitted: 21 September 2005  Accepted: 21 September 2005   Published: 14 December 2005

Abstract

To inhibit fertilisation by more than one sperm (a condition known as polyspermy), eggs have developed preventative mechanisms known as blocks to polyspermy. The block at the level of the egg extracellular coat (the zona pellucida in mammals, the vitelline envelope in non-mammals) has been well characterised in many different animal species and the block at the level of the egg plasma membrane is understood in some non-mammalian species. However, virtually nothing is known about the membrane block to polyspermy in mammalian eggs, despite data dating back 50–90 years that provide evidence for its existence. In the present review, we will discuss the background on blocks to polyspermy used by animal eggs and then focus on the membrane block to polyspermy in mammalian eggs. This will include a summary of classical studies that provide evidence for this block in mammalian eggs, assays used to study the mammalian membrane block and what has been elucidated from recent experimental studies about the cellular signalling events that lead to membrane block establishment and the mechanism of how the membrane block may prevent additional fertilisation.


Acknowledgments

Work in our laboratory is supported by grants from the National Institute of Child Health and Human Development in the National Institutes of Health (HD037696, HD045671) and the March of Dimes (6-FY04–59) to JPE. AJG has been supported by a training grant from the National Institute of Child Health and Human Development (HD 07276).


References

Abbott, A. L. , and Ducibella, T. (2001). Calcium and the control of mammalian cortical granule exocytosis. Front. Biosci. 6, D792–D806.
PubMed |

Abbott, A. L. , Xu, Z. , Kopf, G. S. , Ducibella, T. , and Schultz, R. M. (1998). In vitro culture retards spontaneous activation of cell cycle progression and cortical granule exocytosis that normally occur in in vivo unfertilized mouse eggs. Biol. Reprod. 59, 1515–1521.
CrossRef | PubMed |

Austin C. R. (1961). ‘The Mammalian Egg.’ (Charles C. Thomas: Springfield, MO, USA.)

Bedford, S. J. , Kurokawa, M. , Hinrichs, K. , and Fissore, R. A. (2004). Patterns of intracellular calcium oscillations in horse oocytes fertilized by intracytoplasmic sperm injection: possible explanations for the low success of this assisted reproduction technique in the horse. Biol. Reprod. 70, 936–944.
CrossRef | PubMed |

Binor, Z. , Sokoloski, J. E. , and Wolf, D. P. (1982). Sperm interaction with the zona-free hamster egg. J. Exp. Zool. 222, 187–193.
CrossRef | PubMed |

Collas, P. , Balise, J. J. , Hofmann, G. A. , and Robl, J. M. (1989). Electrical activation of mouse oocytes. Theriogenology 32, 835–844.
CrossRef |

Deguchi, R. , Shirakawa, H. , Oda, S. , Mohri, T. , and Miyazaki, S. (2000). Spatiotemporal analysis of Ca2+ waves in relation to the sperm entry site and animal–vegetal axis during Ca2+ oscillations in fertilized mouse eggs. Dev. Biol. 218, 299–313.
CrossRef | PubMed |

Ducibella, T. , Huneau, D. , Angelichio, E. , Xu, Z. , Schultz, R. M. , Kopf, G. S. , Fissore, R. , Madoux, S. , and Ozil, J. P. (2002). Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev. Biol. 250, 280–291.
CrossRef | PubMed |

Fissore, R. A. , and Robl, J. M. (1992). Intracellular Ca2+ response of rabbit oocytes to electrical stimulation. Mol. Reprod. Dev. 32, 9–16.
CrossRef | PubMed |

Fulton, B. P. , and Whittingham, D. G. (1978). Activation of mammalian oocytes by intracellular injection of calcium. Nature 273, 149–151.
CrossRef | PubMed |

Gordo, A. C. , Rodrigues, P. , Kurokawa, M. , Jellerette, T. , Exley, G. E. , Warner, C. , and Fissore, R. (2002). Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol. Reprod. 66, 1828–1837.
CrossRef | PubMed |

Hassold, T. , Chen, N. , Funkhouser, J. , Jooss, T. , Manuel, B. , Matsuura, J. , Matsuyama, A. , Wilson, C. , Yamane, J. A. , and Jacobs, P. A. (1980). A cytogenetic study of 1000 spontaneous abortions. Ann. Hum. Genet. 44, 151–178.
PubMed |

Hedrick J. L., and Hardy D. M. (1991). Isolation of extracellular matrix structures from Xenopus laevis oocytes, eggs, and embryos. In ‘Methods in Cell Biology, Volume 36. Xenopus laevis: Practical Uses in Cell and Molecular Biology’. (Eds B. K. Kay and H. B. Peng.) pp. 231–247. (Academic Press: San Diego, CA, USA.)

Horvath, P. M. , Kellom, T. , Caulfield, J. , and Boldt, J. (1993). Mechanistic studies of the plasma membrane block to polyspermy in mouse eggs. Mol. Reprod. Dev. 34, 65–72.
CrossRef | PubMed |

Hunter, R. H. (1990). Fertilization of pig eggs in vivo and in vitro. J. Reprod. Fertil. Suppl. 40, 211–226.
PubMed |

Hunter, R. H. (1991a). Oviduct function in pigs, with particular reference to the pathological condition of polyspermy. Mol. Reprod. Dev. 29, 385–391.
CrossRef | PubMed |

Hunter R. H. F. (1991b). Fertilization in the pig and horse. In ‘A Comparative Overview of Mammalian Fertilization’. (Eds B. S. Dunbar and M. G. O’Rand.) pp. 329–349. (Plenum Press: New York, USA.)

Hunter, R. H. , Vajta, G. , and Hyttel, P. (1998). Long-term stability of the bovine block to polyspermy. J. Exp. Zool. 280, 182–188.
CrossRef | PubMed |

Igarashi, H. , Takahashi, E. , Hiroi, M. , and Doi, K. (1997). Aging-related changes in calcium oscillations in fertilized mouse oocytes. Mol. Reprod. Dev. 48, 383–390.
CrossRef | PubMed |

Igusa, Y. , Miyazaki, S. , and Yamashita, N. (1983). Periodic increase in cytoplasmic Ca2+ reflected in hyperpolarizing responses of the egg during cross-species fertilization between hamster and mouse. J. Physiol. 340, 633–647.
PubMed |

Jacobs, P. A. , Angell, R. R. , Buchanan, I. M. , Hassold, T. J. , Matsuyama, A. M. , and Manuel, B. (1978). The origin of human triploids. Ann. Hum. Genet. 42, 49–57.
PubMed |

Jaffe L. A., and Gould M. (1985). Polyspermy-preventing mechanisms. In ‘Biology of Fertilization: The Fertilization Response of the Egg’, Vol. 3. (Eds C. B. Metz and A. Monroy.) pp. 223–250. (Academic Press: Orlando, FL, USA.)

Jaffe, L. A. , Sharp, A. P. , and Wolf, D. P. (1983). Absence of an electrical polyspermy block in the mouse. Dev. Biol. 96, 317–323.
CrossRef | PubMed |

Kline, D. , and Kline, J. T. (1992). Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149, 80–89.
CrossRef | PubMed |

Kurokawa, M. , and Fissore, R. A. (2003). ICSI-generated mouse zygotes exhibit altered calcium oscillations, inositol 1,4,5-trisphosphate receptor-1 down-regulation, and embryo development. Mol. Hum. Reprod. 9, 523–533.
CrossRef | PubMed |

Kurokawa, M. , Sato, K. , and Fissore, R. A. (2004). Mammalian fertilization: from sperm factor to phospholipase Cζ. Biol. Cell 96, 37–45.
CrossRef | PubMed |

Lawrence, Y. , Whitaker, M. , and Swann, K. (1997). Sperm–egg fusion is the prelude to the initial Ca2+ increase at fertilization in the mouse. Development 124, 233–241.
PubMed |

Lewis, W. H. , and Wright, E. S. (1935). On the early development of the mouse egg. Carnegie Inst. Contrib. Embryol. 25, 113–143.


Longo, F. J. (1974a). An ultrastructural analysis of spontaneous activation of hamster eggs aged in vivo. Anat. Rec. 179, 27–55.
CrossRef | PubMed |

Longo, F. J. (1974b). Ultrastructural changes in rabbit eggs aged in vivo. Biol. Reprod. 11, 22–39.
CrossRef | PubMed |

Maleszewski, M. , and Bielak, A. (1993). Sperm penetration in parthenogenetic mouse embryos triggers a plasma membrane block to polyspermy. Zygote 1, 237–242.
PubMed |

Maleszewski, M. , Kimura, Y. , and Yanagimachi, R. (1996). Sperm membrane incorporation into oolemma contributes to the oolemma block to sperm penetration: evidence based on intracytoplasmic sperm injection experiments in the mouse. Mol. Reprod. Dev. 44, 256–259.
CrossRef | PubMed |

Maluchnik, D. , and Borsuk, E. (1994). Sperm entry into fertilised mouse eggs. Zygote 2, 129–131.
PubMed |

McAvey, B. A. , Wortzman, G. B. , Williams, C. J. , and Evans, J. P. (2002). Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs. Biol. Reprod. 67, 1342–1352.
CrossRef | PubMed |

McCulloh, D. H. , Rexroad, C. E. , and Levitan, H. (1983). Insemination of rabbit eggs is associated with slow depolarization and repetitive diphasic membrane potentials. Dev. Biol. 95, 372–377.
CrossRef | PubMed |

Michelmann, H. W. , Bonhoff, A. , and Mettler, L. (1986). Chromosome analysis in polyploid human embryos. Hum. Reprod. 1, 243–246.
PubMed |

Miyazaki, S. , and Igusa, Y. (1981). Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature 290, 702–704.
CrossRef | PubMed |

Nagai, T. (1987). Parthenogenetic activation of cattle follicular oocytes in vitro with ethanol. Gamete Res. 16, 243–249.
CrossRef | PubMed |

Nakano, Y. , Shirakawa, H. , Mitsuhashi, N. , Kuwabara, Y. , and Miyazaki, S. (1997). Spatiotemporal dynamics of intracellular calcium in the mouse egg injected with a spermatozoon. Mol. Hum. Reprod. 3, 1087–1093.
CrossRef | PubMed |

Oda, S. , Deguchi, R. , Mohri, T. , Shikano, T. , Nakanishi, S. , and Miyazaki, S. (1999). Spatiotemporal dynamics of the [Ca2+]i rise induced by microinjection of sperm extract into mouse eggs: preferential induction of a Ca2+ wave from the cortex mediated by the inositol 1,4,5-trisphosphate receptor. Dev. Biol. 209, 172–185.
CrossRef | PubMed |

Odor, D. L. , and Blandau, R. J. (1949). The frequency of occurrence of supernumerary sperm in rat ova. Anat. Rec. 104, 1–11.
CrossRef |

Redkar, A. A. , and Olds-Clarke, P. J. (1999). An improved mouse sperm–oocyte plasmalemma binding assay: studies on characteristics of sperm binding in medium with or without glucose. J. Androl. 20, 500–508.
PubMed |

Sato, M. S. , Yoshitomo, M. , Mohri, T. , and Miyazaki, S. (1999). Spatiotemporal analysis of [Ca2+]i rises in mouse eggs after intracytoplasmic sperm injection (ICSI). Cell Calcium 26, 49–58.
CrossRef | PubMed |

Sengoku, K. , Tamate, K. , Horikawa, M. , Takaoka, Y. , Ishikawa, M. , and Dukelow, W. R. (1995). Plasma membrane block to polyspermy in human oocytes and preimplantation embryos. J. Reprod. Fertil. 105, 85–90.
PubMed |

Sengoku, K. , Tamate, K. , Takaoka, Y. , Horikawa, M. , Goishi, K. , Okada, R. , Tsuchiya, K. , and Ishikawa, M. (1999). Requirement of sperm–oocyte plasma membrane fusion for establishment of the plasma membrane block to polyspermy in human pronuclear oocytes. Mol. Reprod. Dev. 52, 183–188.
CrossRef | PubMed |

Suarez S. S. (1999). Regulation of sperm transport in the mammalian oviduct. In ‘The Male Gamete: From Basic Science to Clinical Applications’. (Ed. C. Gagnon.) pp. 71–80. (Cache River Press: Vienna, IL, USA.)

Sutovsky, P. , Oko, R. , Hewitson, L. , and Schatten, G. (1997). The removal of the sperm perinuclear theca and its association with the bovine oocyte surface during fertilization. Dev. Biol. 188, 75–84.
CrossRef | PubMed |

Szollosi, D. (1967). Development of cortical granules and the cortical reaction in rat and hamster eggs. Anat. Rec. 159, 431–446.
CrossRef | PubMed |

Wang, W. H. , Day, B. N. , and Wu, G. M. (2003). How does polyspermy happen in mammalian oocytes? Microsc. Res. Tech. 61, 335–341.
CrossRef | PubMed |

Ware, C. B. , Barnes, F. L. , Maiki-Laurila, M. , and First, N. L. (1989). Age dependence of bovine oocyte activation. Gamete Res. 22, 265–275.
CrossRef | PubMed |

Wolf, D. E. , and Ziomek, C. A. (1983). Regionalization and lateral diffusion of membrane proteins in unfertilized and fertilized mouse eggs. J. Cell Biol. 96, 1786–1790.
CrossRef | PubMed |

Wolf, D. E. , Edidin, M. , and Handyside, A. H. (1981). Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: indications from the lateral diffusion rates of fluorescent lipid analogues. Dev. Biol. 85, 195–198.
CrossRef | PubMed |

Wolf, D. P. (1974). The cortical granule reaction in living eggs of the toad, Xenopus laevis. Dev. Biol. 36, 62–71.
CrossRef | PubMed |

Wolf, D. P. (1978). The block to sperm penetration in zona-free mouse eggs. Dev. Biol. 64, 1–10.
CrossRef | PubMed |

Wolf, D. P. , and Hamada, M. (1979). Sperm binding to the mouse egg plasmalemma. Biol. Reprod. 21, 205–211.
CrossRef | PubMed |

Wolf, D. P. , Nicosia, S. V. , and Hamada, M. (1979). Premature cortical granule loss does not prevent sperm penetration of mouse eggs. Dev. Biol. 71, 22–32.
CrossRef | PubMed |

Wolf, J. P. , Ducot, B. , Aymar, C. , Rodrigues, D. , Desjardin, S. , Jardin, A. , and Jouannet, P. (1997). Absence of block to polyspermy at the human oolemma. Fertil. Steril. 67, 1095–1102.
CrossRef | PubMed |

Wortzman, G. B. , and Evans, J. P. (2005). Membrane and cortical abnormalities in post-ovulatory aged eggs: analysis of fertilizability and establishment of the membrane block to polyspermy. Mol. Hum. Reprod. 11, 1–9.
CrossRef | PubMed |

Wu, H. , He, C. L. , and Fissore, R. A. (1998a). Injection of a porcine sperm factor induces activation of mouse eggs. Mol. Reprod. Dev. 49, 37–47.
CrossRef | PubMed |

Wu, H. , He, C. L. , Jehn, B. , Black, S. J. , and Fissore, R. A. (1998b). Partial characterization of the calcium-releasing activity of porcine sperm cytosolic extracts. Dev. Biol. 203, 369–381.
CrossRef | PubMed |

Xu, Z. , Abbott, A. , Kopf, G. S. , Schultz, R. M. , and Ducibella, T. (1997). Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biol. Reprod. 57, 743–750.
CrossRef | PubMed |

Yanagimachi R. (1994). Mammalian fertilization. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill.) pp. 189–317. (Raven Press: New York, USA.)

Yanagimachi, R. (2005). Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod. Biomed. Online 10, 247–288.
PubMed |

Zaragoza, M. V. , Surti, U. , Redline, R. W. , Millie, E. , Chakravarti, A. , and Hassold, T. J. (2000). Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole. Am. J. Hum. Genet. 66, 1807–1820.
CrossRef | PubMed |

Zuccotti, M. , Yanagimachi, R. , and Yanagimachi, H. (1991). The ability of hamster oolemma to fuse with spermatozoa: its acquisition during oogenesis and loss after fertilization. Development 112, 143–152.
PubMed |


Full Text PDF (357 KB) Export Citation Cited By (47)