Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Epigenetic regulation during mammalian oogenesis

John Bromfield A B , Will Messamore A B and David F. Albertini A B C D

A Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.

B The Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.

C Marine Biological Laboratory, Woods Hole, MA 02543, USA.

D Corresponding author. Email: dalbertini@kumc.edu

Reproduction, Fertility and Development 20(1) 74-80 http://dx.doi.org/10.1071/RD07181
Published: 12 December 2007

Abstract

The advent of the epigenetic era has sparked a new frontier in molecular research and the understanding of how development can be regulated beyond direct alterations of the genome. Thus far, the focal point of epigenetic regulation during development has been chromatin modifications that control differential gene expression by DNA methylation and histone alterations. But what of events that alter gene expression without direct influence on the DNA itself? The present review focuses on epigenetic pathways regulating development from oogenesis to organogenesis and back that do not involve methylation of cytosine in DNA. We discuss target components of epigenetic modification such as organelle development, compartmentalisation of maternal factors and molecular mediators in the oocyte and how these factors acting during oogenesis impact on later development. Epigenetic regulation of development, be it via cytosine methylation or not, has wide-ranging effects on the subsequent success of a pregnancy and the intrinsic health of offspring. Perturbations in epigenetic regulation have been clearly associated with disease states in adult offspring, including Type II diabetes, hypertension, cancers and infertility. A clear understanding of all epigenetic mechanisms is paramount when considering the increased use of assisted reproductive techniques and the risks associated with their use.

Additional keywords: assisted reproductive technique, developmental programming, embryogenesis, methylation.


References

Albertini D. F.Carabatsos M. J.1998Comparative aspects of meiotic cell cycle control in mammals.J. Mol. Med.76795799doi:10.1007/S001090050283Pubmed Abstract

Anderson C. M.Lopez F.Zimmer A.Benoit J. N.2006Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague-Dawley rat offspring.Biol. Reprod.74538544doi:10.1095/BIOLREPROD.105.045807Pubmed Abstract

Barker D. J. (1998). ‘Mothers, Babies and Health in Later Life.’ (Churchill Livingstone: Edinburgh.)

Burns K. H.Viveiros M. M.Ren Y.Wang P.DeMayo F. J.Frail D. E.Eppig J. J.Matzuk M. M.2003Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos.Science300633636doi:10.1126/SCIENCE.1081813Pubmed Abstract

Carmo-Fonseca M.Mendes-Soares L.Campos I.2000To be or not to be in the nucleolus.Nat. Cell Biol.2E107E112doi:10.1038/35014078Pubmed Abstract

Coan P. M.Burton G. J.Ferguson-Smith A. C.2005Imprinted genes in the placenta: a review.Placenta26(Suppl. A)S10S20doi:10.1016/J.PLACENTA.2004.12.009Pubmed Abstract

Colledge W. H.Carlton M. B.Udy G. B.Evans M. J.1994Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs.Nature3706568doi:10.1038/370065A0Pubmed Abstract

Combelles C. M.Carabatsos M. J.Kumar T. R.Matzuk M. M.Albertini D. F.2004Hormonal control of somatic cell oocyte interactions during ovarian follicle development.Mol. Reprod. Dev.69347355doi:10.1002/MRD.20128Pubmed Abstract

Cooney C. A.Dave A. A.Wolff G. L.2002Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring.J. Nutr.1322393S2400SPubmed Abstract

Cox G. F.Burger J.Lip V.Mau U. A.Sperling K.Wu B. L.Horsthemke B.2002Intracytoplasmic sperm injection may increase the risk of imprinting defects.Am. J. Hum. Genet.71162164doi:10.1086/341096Pubmed Abstract

DeBaun M. R.Niemitz E. L.Feinberg A. P.2003Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19.Am. J. Hum. Genet.72156160doi:10.1086/346031Pubmed Abstract

Elias S. G.Peeters P. H.Grobbee D. E.van Noord P. A.2004Breast cancer risk after caloric restriction during the 1944–1945 Dutch famine.J. Natl Cancer Inst.96539546Pubmed Abstract

Elias S. G.Peeters P. H.Grobbee D. E.van Noord P. A.2005aThe 1944–1945 Dutch famine and subsequent overall cancer incidence.Cancer Epidemiol. Biomarkers Prev.1419811985doi:10.1158/1055-9965.EPI-04-0839Pubmed Abstract

Elias S. G.van Noord P. A.Peeters P. H.den Tonkelaar I.Grobbee D. E.2005bChildhood exposure to the 1944–1945 Dutch famine and subsequent female reproductive function.Hum. Reprod.2024832488doi:10.1093/HUMREP/DEI090Pubmed Abstract

Hales C. N.Barker D. J.2001The thrifty phenotype hypothesis.Br. Med. Bull.60520doi:10.1093/BMB/60.1.5Pubmed Abstract

Harvey A. J.Kind K. L.Thompson J. G.2007Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine.Biol. Reprod.7793101doi:10.1095/BIOLREPROD.106.058826Pubmed Abstract

Hayashi T. T.Dorko M. E.1988A rat model for the study of intrauterine growth retardation.Am. J. Obstet. Gynecol.15812031207Pubmed Abstract

Karman B. N.Tischkau S. A.2006Circadian clock gene expression in the ovary: effects of luteinizing hormone.Biol. Reprod.75624632doi:10.1095/BIOLREPROD.106.050732Pubmed Abstract

Khosla S.Dean W.Brown D.Reik W.Feil R.2001Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.Biol. Reprod.64918926doi:10.1095/BIOLREPROD64.3.918Pubmed Abstract

Kind K. L.Owens J. A.Robinson J. S.Quinn K. J.Grant P. A.Walton P. E.Gilmour R. S.Owens P. C.1995Effect of restriction of placental growth on expression of IGFs in fetal sheep: relationship to fetal growth, circulating IGFs and binding proteins.J. Endocrinol.1462334Pubmed Abstract

Kwong W. Y.Wild A. E.Roberts P.Willis A. C.Fleming T. P.2000Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension.Development12741954202Pubmed Abstract

Lane M.Gardner D. K.2003Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse.Biol. Reprod.6911091117doi:10.1095/BIOLREPROD.103.018093Pubmed Abstract

Lee E. S.Fukui Y.Lee B. C.Lim J. M.Hwang W. S.2004Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro.Anim. Reprod. Sci.84257267doi:10.1016/J.ANIREPROSCI.2004.02.003Pubmed Abstract

Lowenstein L.Cantlie G.Ramos O.Brunton L.1966The incidence and prevention of folate deficiency in a pregnant clinic population.Can. Med. Assoc. J.95797806Pubmed Abstract

Maher E. R.Brueton L. A.Bowdin S. C.Luharia A.Cooper W.et al.2003Beckwith–Wiedemann syndrome and assisted reproduction technology (ART).J. Med. Genet.406264doi:10.1136/JMG.40.1.62Pubmed Abstract

McConnell J. M.Petrie L.2004Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors.Reprod. Biomed. Online9418424Pubmed Abstract

McGinnis L. K.Albertini D. F.Kinsey W. H.2007Localized activation of Src-family protein kinases in the mouse egg.Dev. Biol.306241254doi:10.1016/J.YDBIO.2007.03.024Pubmed Abstract

Mitra J.Schultz R. M.1996Regulation of the acquisition of meiotic competence in the mouse: changes in the subcellular localization of cdc2, cyclin B1, cdc25C and wee1, and in the concentration of these proteins and their transcripts.J. Cell Sci.10924072415Pubmed Abstract

Niemann H.Wrenzycki C.2000Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development.Theriogenology532134doi:10.1016/S0093-691X(99)00237-XPubmed Abstract

Obata Y.Kono T.2002Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth.J. Biol. Chem.27752855289doi:10.1074/JBC.M108586200Pubmed Abstract

Orstavik K. H.Eiklid K.van der Hagen C. B.Spetalen S.Kierulf K.Skjeldal O.Buiting K.2003Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection.Am. J. Hum. Genet.72218219doi:10.1086/346030Pubmed Abstract

Ratnam S.Mertineit C.Ding F.Howell C. Y.Clarke H. J.Bestor T. H.Chaillet J. R.Trasler J. M.2002Dynamics of Dmnt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development.Dev. Biol.245304314doi:10.1006/DBIO.2002.0628Pubmed Abstract

Rinaudo P.Schultz R. M.2004Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos.Reproduction128301311doi:10.1530/REP.1.00297Pubmed Abstract

Rinaudo P. F.Giritharan G.Talbi S.Dobson A. T.Schultz R. M.2006Effects of oxygen tension on gene expression in preimplantation mouse embryos.Fertil. Steril.86(Suppl.)12521265doi:10.1016/J.FERTNSTERT.2006.05.017

Roseboom T. J.van der Meulen J. H.Ravelli A. C.Osmond C.Barker D. J.Bleker O. P.2001Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview.Mol. Cell. Endocrinol.1859398doi:10.1016/S0303-7207(01)00721-3Pubmed Abstract

Schultz G. A.Heyner S.1993Growth factors in preimplantation mammalian embryos.Oxf. Rev. Reprod. Biol.154381Pubmed Abstract

Selwood L.Johnson M. H.2006Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins.Bioessays28128145doi:10.1002/BIES.20360Pubmed Abstract

Sjoblom C.Wikland M.Robertson S. A.1999Granulocyte–macrophage colony-stimulating factor promotes human blastocyst development in vitro.Hum. Reprod.1430693076doi:10.1093/HUMREP/14.12.3069Pubmed Abstract

Sjoblom C.Roberts C. T.Wikland M.Robertson S. A.2005Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis.Endocrinology14621422153doi:10.1210/EN.2004-1260Pubmed Abstract

Skinner M. K.2007Endocrine disruptors and epigenetic transgenerational disease etiology.Pediatr. Res.61(Suppl.)48R50Rdoi:10.1203/PDR.0B013E3180457671Pubmed Abstract

Susiarjo M.Hassold T. J.Freeman E.Hunt P. A.2007Bisphenol A exposure in utero disrupts early oogenesis in the mouse.PLoS Genet.3e5doi:10.1371/JOURNAL.PGEN.0030005Pubmed Abstract

Taylor P. D.McConnell J.Khan I. V.Holemans K.Lawrence K. M.et al.2005Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy.Am. J. Physiol. Regul. Integr. Comp. Physiol.288R134R139Pubmed Abstract

van Engeland M.Weijenberg M. P.Roemen G. M. J. M.Brink M.de Bruine A. P.Goldbohm R. A.van den Brandt P. A.Baylin S. B.de Goeij A. F. P. M.Herman J. G.2003Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: The Netherlands cohort study on diet and cancer.Cancer Res.6331333137Pubmed Abstract

Waddington C. H.1942The epigenotype.Endeavour11820

Watkins A., Torrens C., Cunningham C., Wilkins A., Gray L., Perry H., Mason M., and Fleming T. P. (2007). Maternal low protein diet during oocyte maturation causes increased systolic blood pressure and abnormal behavior in the mouse. In ‘Society for the Study of Reproduction’. (Eds J. J. Eppig and M. A. Handel.) pp. 208. (Society for the Study of Reproduction: Lawrence, KS.)

Young L. E.Fernandes K.McEvoy T. G.Butterwith S. C.Gutierrez C. G.Carolan C.Broadbent P. J.Robinson J. J.Wilmut I.Sinclair K. D.2001Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Nat. Genet.27153154
doi:10.1038/84769Pubmed Abstract

Yuba-Kubo A.Kubo A.Hata M.Tsukita S.2005Gene knockout analysis of two gamma-tubulin isoforms in mice.Dev. Biol.282361373doi:10.1016/J.YDBIO.2005.03.031Pubmed Abstract



Export Citation