Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of supplemental progesterone on the development, metabolism and blastocyst cell number of bovine embryos produced in vitro

Jamie E. Larson A D , Rebecca L. Krisher B and G. Cliff Lamb C
+ Author Affiliations
- Author Affiliations

A Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, Mississippi State, MS 39762, USA.

B Department of Animal Sciences, University of Illinois, 1207 W. Gregory Drive, Urbana, IL 61801, USA.

C North Florida Research and Education Center, University of Florida, 3925 Highway 71, Marianna, FL 32446, USA.

D Corresponding author. Email: jlarson@ads.msstate.edu

Reproduction, Fertility and Development 23(2) 311-318 https://doi.org/10.1071/RD10106
Submitted: 14 May 2010  Accepted: 12 July 2010   Published: 4 January 2011

Abstract

The objectives of the present experiment were to determine whether supplementation with progesterone (LO, 1 ng mL–1 or HI, 100 ng mL–1) during either the first (Culture-1, Day 1 to 3) or second (Culture-2, Day 4 to 7) phase of culture of in vitro-produced embryos alters embryo development, embryo metabolism or blastocyst cell number. The percentage of oocytes that cleaved, the percentage of cleaved embryos that developed to the morula stage or greater, the blastocyst stage or greater or the hatched blastocyst stage were similar among treatments. Quantities of glucose metabolised per blastocyst per hour were similar, but when metabolic data was normalised for numbers of cells in each blastocyst, the LO treatment during Culture-2 metabolised more glucose (P = 0.03) compared with all other treatments. Embryos receiving LO progesterone tended to have greater (P = 0.085) metabolism of glucose compared with embryos receiving HI progesterone. Quantities of pyruvate oxidised per blastocyst per hour, and per cell, were similar among treatments. The number of cells per blastocyst in the control group was increased (P = 0.039) compared with cells in progesterone-treated groups. In conclusion, supplementation with progesterone during the culture of in vitro-produced embryos does not appear to improve embryo characteristics.

Additional keywords: embryo development, embryo metabolism.


References

Ball, G. D., Leibfried, M. L., Lenz, R. W., Ax, R. L., Bavister, B. D., and First, N. L. (1983). Factors affecting successful in vitro fertilization of bovine follicular oocytes. Biol. Reprod. 28, 717–725.
Factors affecting successful in vitro fertilization of bovine follicular oocytes.CrossRef | 1:CAS:528:DyaL3sXhsleru74%3D&md5=b9c85000b413acd5da32596c1c405a59CAS | 6303463PubMed |

Brenner, R. M., and Maslar, I. A. (1988). The primate oviduct and endometrium. In ‘Physiology of Reproduction’. (Eds K. Knobil, J. D. Neill, L. L. Ewing, C. L. Markert, C. S. Greenwald and D. W. Pfaff.) pp. 303–329. (Raven Press, Ltd.: New York.)

Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (1997). Oviductal regulation of fertilization and early embryonic development. J. Reprod. Fertil. 52, 285–300..
| 1:STN:280:DyaK1c3msFCntA%3D%3D&md5=5865e386cbcabba0972473a556fce665CAS |

Clemente, M., de La Fuente, J., Fair, T., Al Naib, A., Gutierrez-Adam, A., Roche, J. F., Rizos, D., and Lonergan, P. (2009). Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 138, 507–517.
Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium?CrossRef | 1:CAS:528:DC%2BD1MXhtFOgtrvL&md5=c2b93accf694e764a9eab6c4efb1a01cCAS | 19556439PubMed |

Dalton, J. C., Nadir, S., Bame, J. H., Noftsinger, M., Nebel, R. L., and Saacke, R. G. (2001). Effect of time of insemination on number of accessory sperm, fertilization rate, and embryo quality in nonlactating dairy cattle. J. Dairy Sci. 84, 2413–2418.
Effect of time of insemination on number of accessory sperm, fertilization rate, and embryo quality in nonlactating dairy cattle.CrossRef | 1:CAS:528:DC%2BD3MXptVGlt7k%3D&md5=c98ddd3e22dd963656117968437cd384CAS | 11768081PubMed |

DeJarnette, J. M., Saacke, R. G., Bame, J., and Vogler, C. J. (1992). Accessory sperm: their importance to fertility and embryo quality, and attempts to alter their number in artificially inseminated cattle. J. Anim. Sci. 70, 484–491..
| 1:STN:280:DyaK387ptlWkuw%3D%3D&md5=11bf3005f8c3c374a02c955de1e3d68fCAS | 1548211PubMed |

Donnay, I., and Leese, H. J. (1999). Embryo metabolism during the expansion of the bovine blastocyst. Mol. Reprod. Dev. 53, 171–178.
Embryo metabolism during the expansion of the bovine blastocyst.CrossRef | 1:CAS:528:DyaK1MXivFKmt7c%3D&md5=83f329c18035e237716ff89095ee1aaaCAS | 10331455PubMed |

Forde, N., Carter, F., Fair, T., Crowe, M. A., Evans, A. C. O., et al. (2009). Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81, 784–794.
Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle.CrossRef | 1:CAS:528:DC%2BD1MXhtFyhsLbM&md5=d5b87f63f4bfb6dba0d5025dcdce42adCAS | 19553605PubMed |

Forde, N., Spencer, T. E., Bazer, F. W., Song, G., Roche, J. F., and Lonergan, P. (2010). Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiol. Genomics 41, 53–62.
Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium.CrossRef | 1:CAS:528:DC%2BC3cXhtlakt7jN&md5=56bdcbecc453981b4ab37f49892ef394CAS | 19996158PubMed |

Gandhi, A. P., Lane, M., Gardner, D. K., and Krisher, R. L. (2000). A single medium supports development of bovine embryos throughout maturation, fertilization and culture. Hum. Reprod. 15, 395–401.
A single medium supports development of bovine embryos throughout maturation, fertilization and culture.CrossRef | 1:STN:280:DC%2BD3c7it1eruw%3D%3D&md5=0756946c1f2a28d2c387b85bfceb2c46CAS | 10655312PubMed |

Garrett, J. E., Geisert, R. D., Zavy, M. T., and Morgan, G. L. (1988). Evidence for maternal regulation of early conceptus growth and development in beef cattle. J. Reprod. Fertil. 84, 437–446.
Evidence for maternal regulation of early conceptus growth and development in beef cattle.CrossRef | 1:CAS:528:DyaL1MXhtFKh&md5=200238746a458a126cfa3b13bbd825afCAS | 3199361PubMed |

Geisert, R. D., Morgan, G. L., Short, E. C., and Zavy, M. T. (1992). Endocrine events associated with endometrial function and conceptus development in cattle. Reprod. Fertil. Dev. 4, 301–305.
Endocrine events associated with endometrial function and conceptus development in cattle.CrossRef | 1:CAS:528:DyaK3sXhtl2ruro%3D&md5=9cbbf57fcee70399450aa2a7b4a8f4b0CAS | 1438962PubMed |

Herrick, J. R., Brad, A. M., and Krisher, K. L. (2006). Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction 131, 289–298.
Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro.CrossRef | 1:CAS:528:DC%2BD28XisFalsLs%3D&md5=a92cc5f6ca024c9141c68af8dc0ed90bCAS | 16452722PubMed |

Javed, M. H., and Wright, R. W. (1991). Determination of pentose phosphate and Embden–Meyerhof pathway activities in bovine embryos. Theriogenology 35, 1029–1037.
Determination of pentose phosphate and Embden–Meyerhof pathway activities in bovine embryos.CrossRef | 1:CAS:528:DyaK3MXksVKltr4%3D&md5=ea706e955d371d0416e230f845ea03f4CAS | 16726969PubMed |

Khurana, N. K., and Niemann, H. (2000). Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol. Reprod. 62, 847–856.
Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo.CrossRef | 1:CAS:528:DC%2BD3cXitFajtrc%3D&md5=74a8cdd6ee7a2aea95db0ea4711f7119CAS | 10727252PubMed |

Lane, M., and Gardner, D. K. (1996). Prospective selection of viable mouse embryos prior to transfer using metabolic rate. Hum. Reprod. 11, 1975–1978..
| 1:STN:280:DyaK2s%2FnvFensA%3D%3D&md5=27f7962a8cb14b54d78252fde2943a20CAS | 8921074PubMed |

Leese, H. J. (1992). Metabolism of the preimplantation mammalian embryo. In ‘Oxford Reviews of Reproductive Biology’. (Ed. S. R. Milligan.) pp. 35–72. (Oxford University Press: Oxford.)

Mann, G. E., and Lamming, G. E. (1999). The influence of progesterone during early pregnancy in cattle. Reprod. Domest. Anim. 34, 269–274.
The influence of progesterone during early pregnancy in cattle.CrossRef | 1:CAS:528:DyaK1MXls1Knu7Y%3D&md5=51a67d7ef6b5d80782dc71e3c657a1c3CAS |

Mann, G. E., and Lamming, G. E. (2001). Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction 121, 175–180.
Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows.CrossRef | 1:CAS:528:DC%2BD3MXnslaqsw%3D%3D&md5=0cff2af4bde33565a3ea81d4f78fa305CAS | 11226041PubMed |

McNeill, R. E., Sreenan, J. M., Diskin, M. G., Cairns, M. T., Fitzpatrick, R., Smith, T. J., and Morris, D. G. (2006). Effect of systemic progesterone concentration on the expression of progesterone responsive genes in the bovine endometrium during the early luteal phase. Reprod. Fertil. Dev. 18, 573–583.
Effect of systemic progesterone concentration on the expression of progesterone responsive genes in the bovine endometrium during the early luteal phase.CrossRef | 1:CAS:528:DC%2BD28XltVWnt7o%3D&md5=171b790ba54582454f766cfe8fb72972CAS | 16836964PubMed |

Murray, M. K. (1992). The biosynthesis, immunocytochemical localization of an estrogen-dependent glycoprotein and associated morphological alterations in the sheep ampulla oviduct. Biol. Reprod. 47, 889–902.
The biosynthesis, immunocytochemical localization of an estrogen-dependent glycoprotein and associated morphological alterations in the sheep ampulla oviduct.CrossRef | 1:CAS:528:DyaK38XmsVGktLo%3D&md5=73345c10c0eb9213e6458318b2cee6c4CAS | 1477215PubMed |

Papaioannou, V. E., and Ebert, K. M. (1988). The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development 102, 793–803..
| 1:STN:280:DyaL1M%2FgsVKhug%3D%3D&md5=daa3164fd287afe79048a1c86d56619fCAS | 3168789PubMed |

Parrish, J. J., Susko-Parrish, J. L., and First, N. L. (1985). Effect of heparin and chondroitin sulfate on the acrosome reaction and fertility of bovine sperm in vitro. Theriogenology 24, 537–549.
Effect of heparin and chondroitin sulfate on the acrosome reaction and fertility of bovine sperm in vitro.CrossRef | 1:CAS:528:DyaL28XkvFahsQ%3D%3D&md5=31f92ad903a72c942d9d42384301e76fCAS | 16726108PubMed |

Parrish, J. J., Susko-Parrish, J., Winer, M. A., and First, N. L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–1180.
Capacitation of bovine sperm by heparin.CrossRef | 1:CAS:528:DyaL1cXkslWit7g%3D&md5=e474b9ad2ed902b364e1c1f9b740f2ebCAS | 3408784PubMed |

Pereira, R. M., Marques, C. C., Baptista, M. C., Vasques, M. I., and Horta, A. E. M. (2009). Embryos and culture cells: a model for studying the effect of progesterone. Anim. Reprod. Sci. 111, 31–40.
Embryos and culture cells: a model for studying the effect of progesterone.CrossRef | 1:CAS:528:DC%2BD1cXhsFCgs7%2FF&md5=e8517e8553ece129614d96e7803ccb36CAS | 18374525PubMed |

Rieger, D., and Guay, P. (1988). Measurements of the metabolism of energy substrates in individual bovine blastocysts. J. Reprod. Fertil. 83, 585–591.
Measurements of the metabolism of energy substrates in individual bovine blastocysts.CrossRef | 1:CAS:528:DyaL1cXltVyisrc%3D&md5=fdc6c8f362462772816b6ed35ef13b1aCAS | 3411552PubMed |

Rieger, D., Loskutoff, N. M., and Betteridge, K. J. (1992). Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–557.
Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro.CrossRef | 1:CAS:528:DyaK3sXhsVCitrc%3D&md5=ef378be9e08fba0e2dbfd5727cf5f819CAS | 1299829PubMed |

Rieger, D., Grisart, B., Semple, E., Van Langendonckt, A., Betteridge, K. J., and Dessy, F. (1995). Comparison of the effects of oviducal cell co-culture and oviducal cell-conditioned medium on the development and metabolic activity of cattle embryos. J. Reprod. Fertil. 105, 91–98.
Comparison of the effects of oviducal cell co-culture and oviducal cell-conditioned medium on the development and metabolic activity of cattle embryos.CrossRef | 1:CAS:528:DyaK2MXptVKmt7k%3D&md5=fee5093ce0da3c9e810b448b48610c66CAS | 7490721PubMed |

Sartori, R., Sartor-Bergfelt, R., Mertens, S. A., Guenther, J. N., Parrish, J. J., and Wiltbank, M. C. (2002). Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. J. Dairy Sci. 85, 2803–2812.
Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter.CrossRef | 1:CAS:528:DC%2BD38Xptlagsbg%3D&md5=13d3d340c23f64b70a375e06fb8d803eCAS | 12487447PubMed |

Telford, N. A., Watson, A. J., and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
Transition from maternal to embryonic control in early mammalian development: a comparison of several species.CrossRef | 1:STN:280:DyaK3c3mslOhtQ%3D%3D&md5=9fba85bb0339b45b5570cc49f8f79f96CAS | 2189447PubMed |

Thompson, J. G. (1996). Defining the requirements for bovine embryo culture. Theriogenology 45, 27–40.
Defining the requirements for bovine embryo culture.CrossRef |

Thompson, J. G., Partridge, R. G., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos.CrossRef | 1:CAS:528:DyaK28XitFKntrc%3D&md5=b8ae8d737eee546b9f8ab994e1df7c7aCAS | 8699414PubMed |

Tiffin, G. J., Rieger, D., Betteridge, K. J., Yadav, B. R., and King, W. A. (1991). Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J. Reprod. Fertil. 93, 125–132.
Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development.CrossRef | 1:CAS:528:DyaK3MXmt12is7c%3D&md5=d114a0144c5099edf96c8a24d6a08744CAS | 1920281PubMed |

Verhage, H. G., Mavrogianis, P. A., Boice, M. L., Li, W., and Fazleabas, A. T. (1990). Oviducal epithelium of the baboon: hormonal control and the immuno-gold localization of oviduct-specific glycoproteins. Am. J. Anat. 187, 81–90.
Oviducal epithelium of the baboon: hormonal control and the immuno-gold localization of oviduct-specific glycoproteins.CrossRef | 1:CAS:528:DyaK3cXpt1Sitg%3D%3D&md5=cd0685f2126a187ce5cff2fab3bc3d6aCAS | 2296912PubMed |

Zheng, P., Wei, S., Bavister, B. D., Yang, J., Ding, C., and Ji, W. (2003). 17β-estradiol and progesterone improve in vitro cytoplasmic maturation of oocytes from unstimulated prepubertal and adult rhesus monkeys. Hum. Reprod. 18, 2137–2144.
17β-estradiol and progesterone improve in vitro cytoplasmic maturation of oocytes from unstimulated prepubertal and adult rhesus monkeys.CrossRef | 1:CAS:528:DC%2BD3sXns1Cntr0%3D&md5=851bf4617cb51dd3703f94c356f7c1e6CAS | 14507835PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (19)