Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Study of the proacrosin–acrosin system in epididymal, ejaculated and in vitro capacitated boar spermatozoa

Marta Puigmulé A C , Anna Fàbrega A , Marc Yeste B , Sergi Bonet A and Elisabeth Pinart A
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus of Montilivi, s/n, 17071 Girona, Spain.

B Unit of Animal Reproduction, Department of Animal Medicine and Surgery, School of Veterinary Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain.

C Corresponding author. Email: marta.puigmule@udg.edu

Reproduction, Fertility and Development 23(7) 837-845 https://doi.org/10.1071/RD10345
Submitted: 20 December 2010  Accepted: 21 March 2011   Published: 19 August 2011

Abstract

The present study aimed to develop a set of sensitive assays to evaluate the presence of different isoforms, the activity degree, and the immunolocalisation of proacrosin–acrosin in sexually mature boars. The goal was to determine the proacrosin–acrosin status of boar spermatozoa throughout epididymal maturation, during ejaculation and after in vitro capacitation. In epididymal samples, proacrosin expression was high in all regions studied. In contrast, α- and β-acrosin expression was low in the caput region, and increased progressively during maturation and in vitro capacitation. In in vitro capacitated samples, the acrosin activity was 2.25 times higher than in the ejaculated samples and immunolocalisation analyses showed redistribution of proacrosin–acrosin at the apical ridge of the head. This study provides relevant data about the expression, localisation and activity of the proacrosin–acrosin system in healthy adult boars that can be used as a base to analyse changes in the proacrosin–acrosin system under pathological conditions.

Additional keywords: activity and immunolocalisation, capacitation process, epididymal maturation, proacrosin-acrosin expression.


References

Austin, C. R. (1951). The formation, growth, and conjugation of the pronuclei in the rat egg. J. R. Microsc. Soc. 71, 295–306.
| 1:STN:280:DyaG3s%2FpsFehug%3D%3D&md5=2dae2422405c8537a656afff1576777bCAS | 13070311PubMed |

Austin, C. R. (1967). Capacitation of spermatozoa. Int. J. Fertil. 12, 25–31.
| 1:STN:280:DC%2BD38jhtVahuw%3D%3D&md5=1c9e171fb44209e23b26251f795499d4CAS | 12471681PubMed |

Casas, I., Sancho, S., Briz, M., Pinart, E., Bussalleu, E., Yeste, M., and Bonet, S. (2009). Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 72, 930–948.
Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsr3E&md5=5675ed62b5858137ab429391148c9f06CAS | 19651432PubMed |

Castella, S., Fouchécourt, S., Teixeira-Gomes, A. P., Belghazi, M., Dacheux, F., and Dacheux, J. L. (2004). Identification of a member of a new RNase family specifically secreted by epididymal caput epithelium. Biol. Reprod. 70, 319–328.
Identification of a member of a new RNase family specifically secreted by epididymal caput epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslyruw%3D%3D&md5=a1a48eed8f711e8a5fff35ab9adaad8dCAS | 14561640PubMed |

Chang, M. C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168, 697–698.
Fertilizing capacity of spermatozoa deposited into the fallopian tubes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG38%2Fht1Cgtw%3D%3D&md5=41fb2e3762a53367e9b421403e3baeabCAS | 14882325PubMed |

Ciereszko, A., Ottobre, J. S., and Glogowski, J. (2000). Effects of season and breed on sperm acrosin activity and semen quality of boars. Anim. Reprod. Sci. 64, 89–96.
Effects of season and breed on sperm acrosin activity and semen quality of boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVOjtrc%3D&md5=cff9cf0dcbd4feded2118514822902caCAS | 11078969PubMed |

Cortes, C. J., Codelia, V. A., Manosalva, I., de Lange, J., De los Reyes, M., and Moreno, R. D. (2006). Proacrosin/acrosin quantification as an indicator of acrosomal integrity in fresh and frozen dog spermatozoa. Anim. Reprod. Sci. 93, 165–175.
Proacrosin/acrosin quantification as an indicator of acrosomal integrity in fresh and frozen dog spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFSrsrw%3D&md5=a597942b40e697bc0955e7a702663513CAS | 16169165PubMed |

Dacheux, J. L., Dacheux, F., and Paquignon, M. (1989). Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar. Biol. Reprod. 40, 635–651.
Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVCqtbs%3D&md5=6343021059895b25b350926549f5faacCAS | 2758093PubMed |

Dacheux, J. L., Belghazi, M., Lanson, Y., and Dacheux, F. (2006). Human epididymal secretome and proteome. Mol. Cell. Endocrinol. 250, 36–42.
Human epididymal secretome and proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGjtrs%3D&md5=8b548e5d1cc230a6ebf01b347848f49bCAS | 16431015PubMed |

Davidová, N., Jonáková, V., and Manásková-Postlerová, P. (2009). Expression and localization of acrosin inhibitor in boar reproductive tract. Cell Tissue Res. 338, 303–311.
Expression and localization of acrosin inhibitor in boar reproductive tract.Crossref | GoogleScholarGoogle Scholar | 19813026PubMed |

De los Reyes, M., and Barros, C. (2000). Immunolocalization of proacrosin/acrosin in bovine sperm and sperm penetration through the zona pellucida. Anim. Reprod. Sci. 58, 215–228.
Immunolocalization of proacrosin/acrosin in bovine sperm and sperm penetration through the zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFOitbo%3D&md5=de4dbc46a851625dcbaad70b2204ad29CAS | 10708896PubMed |

Ded, L., Dostalova, P., Dorosh, A., Dvorakova-Hortova, K., and Peknicova, J. (2010). Effect of estrogens on boar sperm capacitation in vitro. Reprod. Biol. Endocrinol. 8, 87.
Effect of estrogens on boar sperm capacitation in vitro.Crossref | GoogleScholarGoogle Scholar | 20626847PubMed |

Druart, X., Gatti, J. L., Dacheux, F., and Dacheux, J. L. (1994). Analysis by two-dimensional gel electrophoresis of ram epididymal secreted proteins. Cell. Mol. Biol. (Noisy-le-grand) 40, 91–93.
| 1:CAS:528:DyaK2cXjtFylt7Y%3D&md5=1060fb29b9d4739558aa27dfc82a3d02CAS |

Fini, C., Tanfani, F., Bertoli, E., Jansen, S., Spicer, C., Floridi, A., and Jones, R. (1996). Boar sperm proacrosin infrared investigation: secondary structure analysis after autoactivation and suramin binding. Biochem. Mol. Med. 58, 37–45.
Boar sperm proacrosin infrared investigation: secondary structure analysis after autoactivation and suramin binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvFyktL0%3D&md5=57ef2477e567043f647fc662b14b86afCAS | 8809344PubMed |

Flesch, F. M., Brouwers, J. F., Nievelstein, P. F., Verkleij, A. J., van Golde, L. M., Colembrander, B., and Gadella, B. M. (2001). Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J. Cell Sci. 114, 3543–3555.
| 1:CAS:528:DC%2BD3MXotVSqtb4%3D&md5=a0306768306d79607c2bb402062462b5CAS | 11682613PubMed |

Fouchecourt, S., Metayer, S., Locatelli, A., Dacheux, F., and Dacheux, J. L. (2000). Stallion epididymal fluid proteome: qualitative and quantitative characterization; secretion and dynamic changes of major proteins. Biol. Reprod. 62, 1790–1803.
Stallion epididymal fluid proteome: qualitative and quantitative characterization; secretion and dynamic changes of major proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2htr8%3D&md5=0e86b3f471c73fa3b102558920a06b96CAS | 10819784PubMed |

García Herreros, M., Aparicio, I. M., Núñez, I., García-Marín, L. J., Gil, F. J., and Peña Vega, F. J. (2005). Boar sperm velocity and motility patterns under capacitating and non-capacitating incubation conditions. Theriogenology 63, 795–805.
Boar sperm velocity and motility patterns under capacitating and non-capacitating incubation conditions.Crossref | GoogleScholarGoogle Scholar | 15629798PubMed |

Harrison, R. A. (2004). Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol. Reprod. Dev. 67, 337–352.
Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlKisLw%3D&md5=de90636309eca074c916bbf075a6e7c5CAS | 14735495PubMed |

Harrison, R. A., and Miller, N. G. (2004). cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm. Mol. Reprod. Dev. 55, 220–228.
cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm.Crossref | GoogleScholarGoogle Scholar |

Harrison, K. A. P., Mairet, B., and Miller, N. G. A. (1993). Flow cytometric studies of bicarbonate mediated Ca2+ influx in boar sperm populations. Mol. Reprod. Dev. 35, 197–208.
Flow cytometric studies of bicarbonate mediated Ca2+ influx in boar sperm populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlKgtLg%3D&md5=1523dd97103fafa376a1c63950789adaCAS |

Hermans, J. M., Haines, D. S., James, P. S., and Jones, S. (2003). Kinetics of inhibition of sperm β-acrosin activity by suramin. FEBS Lett. 544, 119–122.
Kinetics of inhibition of sperm β-acrosin activity by suramin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFWlur8%3D&md5=ccab358d95c33404e3435c1c9fbc6ddfCAS | 12782300PubMed |

Holt, W. V., and Harrison, R. A. (2002). Bicarbonate stimulation of boar sperm motility via a protein kinase A-dependent pathway: between-cell and between-ejaculate differences are not due to deficiencies in protein kinase A activation. J. Androl. 23, 557–565.
| 1:CAS:528:DC%2BD38Xlt1KhsLc%3D&md5=9664566914bfb7314ec4b463e641ef60CAS | 12065464PubMed |

Howes, E., Pascall, J. C., Engel, W., and Jones, R. (2001). Interactions between mouse ZP2 glycoprotein and proacrosin; a mechanism for secondary binding of sperm to the zona pellucida during fertilization. J. Cell Sci. 114, 4127–4136.
| 1:CAS:528:DC%2BD3MXptVKlsLw%3D&md5=02a4a8eb85da7a1cac9f284dd2d02692CAS | 11739644PubMed |

Januskauskas, A., Lukoseviciute, K., Nagy, S., Johannisson, A., and Rodriguez-Martinez, H. (2005). Assessment of the efficacy of Sephadex G-15 filtration of bovine spermatozoa for cryopreservation. Theriogenology 63, 160–178.
Assessment of the efficacy of Sephadex G-15 filtration of bovine spermatozoa for cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrt7nE&md5=d9c00ff7f342a059525892b4c34bd204CAS | 15589282PubMed |

Kadirvel, G., Kumar, S., Kumaresan, A., and Kathiravan, P. (2009). Capacitation status of fresh and frozen-thawed buffalo spermatozoa in relation to cholesterol level, membrane fluidity and intracellular calcium. Anim. Reprod. Sci. 116, 244–253.
Capacitation status of fresh and frozen-thawed buffalo spermatozoa in relation to cholesterol level, membrane fluidity and intracellular calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWnsrfE&md5=067ed75b428835655044df3d858f4d1bCAS | 19261396PubMed |

Kennedy, W. P., Kaminski, J. M., Van der Ven, H. H., Jeyendran, R. S., Reid, D. S., Blackwell, J., Biefeld, P., and Zaneveld, L. J. D. (1989). A simple, clinical assay to evaluate the acrosin activity of human spermatozoa. J. Androl. 10, 221–231.
| 1:CAS:528:DyaL1MXksFaru78%3D&md5=5389c883cfc208bfae38060aa7027b9cCAS | 2745233PubMed |

Langlois, M. R., Oorlynck, L., Vandekerkhove, F., Criel, A., Bernard, D., and Balton, V. (2005). Discrepancy between sperm acrosin activity and sperm morphology: significance for fertilization in vitro. Clin. Chim. Acta 351, 121–129.
Discrepancy between sperm acrosin activity and sperm morphology: significance for fertilization in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVant73I&md5=a4086799924cccb9d02cb54d5695e031CAS | 15563880PubMed |

Matás, C., Sansegundo, M., Ruiz, S.,, Garcia-Vázquez, F. A., Gadea, J., Romar, R, and Coy, P. (2010). Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal boar spermatozoa. Theriogenology 74, 1327–1340.
Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 20688369PubMed |

Moos, J., Peknicova, J., and Tesarik, J. (1993). Relationship between molecular conversions of acrosin and the progression of exocytosis in the calcium ionophore-induced acrosome reaction. Biochim. Biophys. Acta 1176, 199–207.
Relationship between molecular conversions of acrosin and the progression of exocytosis in the calcium ionophore-induced acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFahsLg%3D&md5=e8cdcc73e11774483b148578bd3d30ccCAS | 8471622PubMed |

Niwa, K., Imai, H., Kim, C. L., and Iritani, A. (1980). Fertilization in vitro of hamster and mouse eggs in a chemically defined medium. J. Reprod. Fertil. 58, 109–114.
Fertilization in vitro of hamster and mouse eggs in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7ktVWhtQ%3D%3D&md5=21ed82907eea45b6fb422440fb84f02cCAS | 7359465PubMed |

Nuzzo, N. A., Anderson, A. R., and Zaneveld, J. L. (1990). Proacrosin activation and acrosin release during the guinea pig acrosome reaction. Mol. Reprod. Dev. 25, 52–60.
Proacrosin activation and acrosin release during the guinea pig acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslKit7c%3D&md5=ee91cdb0442da182d242785300551eabCAS | 2118365PubMed |

Phi-Van, L., Muller-Esterl, W., Florke, S., Schmid, M., and Engel, W. (1983). Proacrosin and the differentiation of the spermatozoa. Biol. Reprod. 29, 479–486.
Proacrosin and the differentiation of the spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c%2FltlGlsg%3D%3D&md5=dc9291d1e12e6303096871b65c6d64a8CAS | 6416315PubMed |

Polakoski, K. L., and Parrish, R. F. (1977). Boar proacrosin. Purification and preliminary activation studies of proacrosin isolated from ejaculated boar sperm. J. Biol. Chem. 252, 1888–1894.
| 1:CAS:528:DyaE2sXhs1Ojsb4%3D&md5=01f0b50a94d9d77583b675145bfb109aCAS | 845151PubMed |

Pruneda, A., Pinart, E., Bonet, S., Yeung, C.-H., and Cooper, T. (2006). Study of the polyol pathway in the porcine epididymis. Mol. Reprod. Dev. 73, 859–865.
Study of the polyol pathway in the porcine epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFahsrw%3D&md5=aa21477629522ddb5b6ea2ccdb610937CAS | 16596633PubMed |

Pruneda, A., Yeung, C., Bonet, S., Pinart, E., and Cooper, T. (2007). Concentrations of carnitine, glutamate and myo-inositol in epididymal fluid and spermatozoa from boars. Anim. Reprod. Sci. 97, 344–355.
Concentrations of carnitine, glutamate and myo-inositol in epididymal fluid and spermatozoa from boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqtrfI&md5=01c19ba74084cee0f279a1ddbfdee9caCAS | 16488563PubMed |

Puigmulé, M., Fàbrega, A., Briz, M., Sancho, S., Bussalleu, E., Yeste, M., Casas, I., Garcia, E., Torner, E., Bonet, S., and Pinart, E. (2010). Optimization of the in vitro capacitation time of boar spermatozoa by assessment of sperm viability and membrane fluidity. Proceedings of Reproduction in Domestic Animals 45, 79–102.

Pursel, V. G., and Johnson, L. A. (1976). Frozen boar spermatozoa: methods and thawing pellets. J. Anim. Sci. 42, 927–931.
| 1:STN:280:DyaE287mslehtg%3D%3D&md5=0be3ae0a50ffb6446c5554b17c5bfa23CAS | 1262291PubMed |

Saravia, F., Hernández, M., Wallgren, M., Johannisson, A., and Rodríguez-Martínez, H. (2007). Controlled cooling during semen cryopreservation does not induce capacitation of spermatozoa from two portions of the boar ejaculate. Int. J. Androl. 30, 485–499.
Controlled cooling during semen cryopreservation does not induce capacitation of spermatozoa from two portions of the boar ejaculate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1Whsg%3D%3D&md5=6f4344d4a10f541b8c82b9544a46254dCAS | 17651408PubMed |

Suter, L., and Habenicht, U. F. (1998). Characterization of mouse epididymal acrosin: comparative studies with acrosin from boar and human ejaculated spermatozoa. Int. J. Androl. 21, 95–104.
Characterization of mouse epididymal acrosin: comparative studies with acrosin from boar and human ejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVSns7g%3D&md5=d7958cddd2689ca6223f0b2f63745f62CAS | 9675618PubMed |

Syntin, P., Dacheux, F., Druart, X., Gatti, J. L., Okamura, N., and Dacheux, J. L. (1996). Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol. Reprod. 55, 956–974.
Characterization and identification of proteins secreted in the various regions of the adult boar epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmtlamtrw%3D&md5=7ab1676c15e4bde74cfa8dbc5ee61c7dCAS | 8902205PubMed |

Tardif, S., Dubé, C., Chevalier, S., and Bailey, J. L. (2001). Capacitation is associated with tyrosine phosphorilation and tyrosine kinase-like activity of pig sperm proteins. Biol. Reprod. 65, 784–792.
Capacitation is associated with tyrosine phosphorilation and tyrosine kinase-like activity of pig sperm proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFems7w%3D&md5=3da6c9c0785047463f1fafcf84dbd5baCAS | 11514342PubMed |

Tesarik, J., Drahorád, J., and Péknicová, J. (1988). Subcellular immunochemical localization of acrosin in human spermatozoa during the acrosome reaction and zona pellucida penetration. Fertil. Steril. 50, 133–141.
| 1:STN:280:DyaL1c3lsFemsg%3D%3D&md5=23a0a958db9919db0afc469d52f87e9cCAS | 3164279PubMed |

Tesarik, J., Drahorad, J., Testart, J., and Mendoza, C. (1990). Acrosin activation follows its surface exposure and precedes membrane fusion in human sperm acrosome reaction. Development 110, 391–400.
| 1:CAS:528:DyaK3MXktVSjug%3D%3D&md5=2e0df51bf6eb7219e30b7419e7000214CAS | 2133545PubMed |

Tsantarliotou, M. P., Taitzoglou, I. A., Goulas, P., and Kokolis, N. A. (2002). Dexamethasone reduces acrosin activity of ram spermatozoa. Andrologia 34, 188–193.
Dexamethasone reduces acrosin activity of ram spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlOqtrc%3D&md5=cd5b50c00b0eba6cf21df3830935a325CAS | 12059816PubMed |

Urch, U. A., and Patel, H. (1991). The interaction of boar sperm proacrosin with its natural substrate, the zona pellucida, and with polysulfated polysaccharides. Development 111, 1165–1172.
| 1:CAS:528:DyaK3MXktVeqtLc%3D&md5=19d9c9c50e7967b43794e3561b4a3613CAS | 1908770PubMed |

Van Gestel, R. A., Brewis, I. A., Ashton, P. R., Helms, J. B., Brouwers, J. F., and Gadella, B. A. (2005). Capacitation-dependent concentration of lipids rafts in the apical ridge area of porcine sperm cells. Mol. Hum. Reprod. 11, 583–590.
Capacitation-dependent concentration of lipids rafts in the apical ridge area of porcine sperm cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVelsbrP&md5=4ebef09623153bc6cf9f164b411c72a7CAS | 16051681PubMed |

Yanagimachi, R. (1969). In vitro capacitation of hamster spermatozoa by follicular fluid. J. Reprod. Fertil. 18, 275–286.
In vitro capacitation of hamster spermatozoa by follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M3hvFGjtg%3D%3D&md5=bf9a96932c6268b7d11bc8e9a8873aeeCAS | 5815307PubMed |

Zahn, A., Furlong, L. I., Biancotti, J. C., Ghiringhelli, P. D., Marín-Briggiler, C. I., and Vazquez-Levin, M. H. (2002). Evaluation of the proacrosin/acrosin system and its mechanism of activation I human sperm extracts. J. Reprod. Immunol. 54, 43–63.
Evaluation of the proacrosin/acrosin system and its mechanism of activation I human sperm extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1aisbo%3D&md5=8af0fbbab77020a0364505cfa4180aa6CAS | 11839395PubMed |