Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of systemic administration or intrabursal injection of serotonin on puberty, first ovulation and follicular development in rats

M. J. Moran A E , M. E. Ayala A E , E. Gallegos A , J. Romero A , R. Chavira C , P. Damián-Matsumura D and R. Domínguez A
+ Author Affiliations
- Author Affiliations

A Unidad de Investigación en Biología de la Reproducción, Laboratorio de Pubertad. Facultad de Estudios Superiores Zaragoza, UNAM. AP 9-020, CP 15000, México D.F., México.

B Laboratorio de Hormonas Esteroides. Instituto de Ciencias Médicas y de la Salud Salvador Subirán, Tlalpan, México D.F. 14000, México D.F., Mexico.

C Departamento de Biología de la Reproducción. UAM Iztapalapa, México D.F., México.

D Deceased.

E Corresponding author. Email: marayalamx@yahoo.com.mx

Reproduction, Fertility and Development 25(8) 1105-1114 https://doi.org/10.1071/RD12253
Submitted: 2 August 2012  Accepted: 7 October 2012   Published: 23 November 2012

Abstract

To elucidate the role of serotonin in the onset of puberty, the effects of both systemic and in-ovarian bursa administration of serotonin on the neuroendocrine mechanism that modulates the onset of puberty, follicular development and first ovulation were evaluated. Two experiments were carried out. For the first, 25 or 37.5 mg kg–1 of bodyweight of serotonin creatinine sulfate was administered by a subcutaneous route to 30-day-old female rats. In the second experiment, serotonin creatinine sulfate was administered directly into the ovarian bursa of 34-day-old female rats. Systemic administration of 25 or 37.5 mg kg–1 of serotonin creatinine sulfate induced a delay in the ages of vaginal opening and first vaginal oestrus, a decrease in the number of ovulating animals, and serum concentrations of FSH, LH, oestradiol and progesterone. An increase in the number of Class 3 (>500 μm) and atretic follicles was observed in the ovaries of these animals. The administration of serotonin creatinine sulfate in the ovarian bursa did not modify the onset of puberty and ovulation, but a reduced serum concentration of oestradiol was observed. Our results suggest that serotonin acts on the components of the hypothalamus–hypophysis–ovary axis by modulating follicular development, ovarian functions and the onset of puberty.

Additional keywords : gonadotrophins, hypothalamus, oestrogens, ovary, progesterone.


References

Amireault, P., and Dubé, F. (2005a). Intracellular cAMP and calcium signalling by serotonin in mouse cumulus–oocyte complexes. Mol. Pharmacol. 68, 1678–1687.
| 1:CAS:528:DC%2BD2MXht1yksbbL&md5=43007b0a775b0f136f04d33f01ec36c8CAS | 16131615PubMed |

Amireault, P., and Dubé, F. (2005b). Serotonin and its antidepressant-sensitive transport in mouse cumulus–oocyte complexes and early embryos. Biol. Reprod. 73, 358–365.
Serotonin and its antidepressant-sensitive transport in mouse cumulus–oocyte complexes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLY%3D&md5=818156f2fe1b402d16a02365e3e4453aCAS | 15858217PubMed |

Arias, P., Szwarcfarb, B., Rondina, D. C., Carbone, S., Sverdlik, R., and Moguilevsky, J. A. (1990). In vivo and in vitro studies on the effect of the serotonergic system on luteinizing hormone and luteinizing hormone-releasing hormone secretion in prepubertal and peripubertal female rats. Brain Res. 523, 57–61.
In vivo and in vitro studies on the effect of the serotonergic system on luteinizing hormone and luteinizing hormone-releasing hormone secretion in prepubertal and peripubertal female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltV2rs7Y%3D&md5=68db0eca3fb26bfa484cf56da51b1db0CAS | 2207690PubMed |

Ayala, M. E. (2009). Brain serotonin, psychoactive drugs and effects on reproduction. Cent. Nerv. Syst. Agents. Med. Chem. 9, 258–276.
| 1:CAS:528:DC%2BD1MXhsFWisLbJ&md5=128f7b1bf0d40dde6bbaf5467ce3872bCAS | 20021359PubMed |

Ayala, M. E., Rosas, P., and Domínguez, R. (1994). Different effects of unilateral and bilateral lesions of the dorsal raphe nucleus on puberty and first ovulation. Brain Res. Bull. 34, 27–30.
Different effects of unilateral and bilateral lesions of the dorsal raphe nucleus on puberty and first ovulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3ltFKiuw%3D%3D&md5=c27dcadda92d2141f14be4f2a2a33842CAS | 8193930PubMed |

Ayala, M. E., Monroy, J., Morales, L., Castro, M. E., and Domínguez, R. (1998). Effects of a lesion in the dorsal raphe nuclei performed during the juvenile period of the female rat, on puberty. Brain Res. Bull. 47, 211–218.
Effects of a lesion in the dorsal raphe nuclei performed during the juvenile period of the female rat, on puberty.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FotFCmsg%3D%3D&md5=269f247cc6821642c57f5dadb7f02c70CAS | 9865852PubMed |

Billig, H., Furuta, I., and Hsueh, A. J. (1993). Oestrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 133, 2204–2212.
Oestrogens inhibit and androgens enhance ovarian granulosa cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXosVY%3D&md5=413279859e4eb859ea52dab98c989492CAS | 8404672PubMed |

Bódis, J., Török, A., Tinneberg, H. R., Hanf, V., Hamori, M., and Cledon, P. (1992). Influence of serotonin on progesterone and oestradiol secretion of cultured human granulosa cells. Fertil. Steril. 57, 1008–1011.
| 1572466PubMed |

Bouchaud, C. (1972). Autoradiographic demonstration of an hematoencephalic barrier against 5-hydroxytryptamine. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 275, 975–978.
| 1:CAS:528:DyaE3sXhsVSitg%3D%3D&md5=5c51e0a436a08051ebf7a233bb76e629CAS | 4630629PubMed |

Bulat, M., and Supek, Z. (1968a). Passage of 5-hydroxytryptamine through the blood–brain barrier, its metabolism in the brain and elimination of 5-hydroxyindoleacetic acid from the brain tissue. J. Neurochem. 15, 383–389.
Passage of 5-hydroxytryptamine through the blood–brain barrier, its metabolism in the brain and elimination of 5-hydroxyindoleacetic acid from the brain tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktVWiur4%3D&md5=9aadd1528697649df57e0f162d52da79CAS | 5648484PubMed |

Bulat, M., and Supek, Z. (1968b). Mechanism of 5-hydroxytryptamine penetration through the cerebrospinal fluid–brain barrier. Nature 219, 72–73.
Mechanism of 5-hydroxytryptamine penetration through the cerebrospinal fluid–brain barrier.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXksVaiu7g%3D&md5=9a65b40736c86f293cdb0c4ad1a7cd4fCAS | 5659622PubMed |

Carvajal, J. C., Carbajo, S., Carbajo-Pérez, E., Castro, S., and Rodríguez, J. (1991). Serotonin immunoreactivity in the intermediate lobe of the rat pituitary. Histol. Histopathol. 6, 381–385.
| 1:CAS:528:DyaK3MXmt1Cms7Y%3D&md5=a07b5760d05de546ce45c7ce599925d5CAS | 1810536PubMed |

Chun, S. Y., Eisenhauer, K. M., Minami, S., Billig, H., Perlas, E., and Hsueh, A. J. (1996). Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137, 1447–1456.
Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVegtLk%3D&md5=21f895cf63f296d205c9a6dd92e5aae6CAS | 8625923PubMed |

Dickerson, S. M., Cunningham, S. L., and Gore, A. C. (2011). Reproductive neuroendocrine targets of developmental exposure to endocrine disruptors. In ‘Endocrine Disruptors and Puberty’. (Eds E. D. Kandakaris and A. C. Gore.) pp. 49–118. (Human Press: New York.)

Dubé, F., and Amireault, P. (2007). Local serotonergic signalling in mammalian follicles, oocytes and early embryos. Life Sci. 81, 1627–1637.
Local serotonergic signalling in mammalian follicles, oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 18023821PubMed |

Emmen, J. M., Couse, J. F., Elmore, S. M., Yates, M. M., Kissling, G. E., and Korach, K. S. (2005). In vitro growth and ovulation of follicles from ovaries of oestrogen receptor (ER)α and ERβ null mice indicate a role for ERβ in follicular maturation. Endocrinology 146, 2817–2826.
In vitro growth and ovulation of follicles from ovaries of oestrogen receptor (ER)α and ERβ null mice indicate a role for ERβ in follicular maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslehsrY%3D&md5=935f8e670459b273ee3f9e0281cc615fCAS | 15731357PubMed |

Findlay, J. K., Britt, K., Kerr, J. B., O’Donnell, L., Jones, M. E., Drummond, A. E., and Simpson, E. R. (2001). The road to ovulation: the role of oestrogens. Reprod. Fertil. Dev. 13, 543–547.
The road to ovulation: the role of oestrogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFOmsLg%3D&md5=0df65d97dc3987e103b309d5931bd00eCAS | 11999304PubMed |

Frazer, A., and Hensler, J. (1999). Serotonin. In ‘Basic Neurochemistry, Molecular, Cellular and Medical Aspects’. (Eds G. J. Siegel, B. W. Agranoff, R. W. Albers and P. B. Molinoff.) pp. 263–292. (Raven Press: New York.)

Graveleau, C., Paust, H. J., Schmidt-Grimminger, D., and Mukhopadhyay, A. K. (2000). Presence of a 5–HT7 receptor positively coupled to adenylate cyclase activation in human granulosa-lutein cells. J. Clin. Endocrinol. Metab. 85, 1277–1286.
Presence of a 5–HT7 receptor positively coupled to adenylate cyclase activation in human granulosa-lutein cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFOqsLk%3D&md5=f9aa1df3bc9db18af15a79b753a8d15aCAS | 10720076PubMed |

Greenwald, G. S., and Roy, S. K. (1994) Follicular development and its control. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill.) pp. 629–724. (Raven Press: New York.)

Héry, M., François-Bellan, A. M., Héry, F., Deprez, P., and Becquet, D. (1997). Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1 cells via 5–HT7 receptors. Endocrine 7, 261–265.
Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1 cells via 5–HT7 receptors.Crossref | GoogleScholarGoogle Scholar | 9549053PubMed |

Hillier, S. G. (2001). Gonadotrophic control of ovarian follicular growth and development. Mol. Cell. Endocrinol. 179, 39–46.
Gonadotrophic control of ovarian follicular growth and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVylsLY%3D&md5=4a6ed68fa2d0e331dbc435551f2a6240CAS | 11420129PubMed |

Hirshfield, A. N. (1991). Development of follicles in the mammalian ovary. Int. Rev. Cytol. 124, 43–101.
Development of follicles in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFSmsr4%3D&md5=ce46e9c38971b5a49726fec940456e42CAS | 2001918PubMed |

Hornung, J.-P. (2010). The neuroanatomy of the serotonergic system. In ‘Handbook of the Behavioural Neurobiology of Serotonin’. (Eds C. P. Müller and B. L. Jacobs.) pp. 51–64. (Academic Press: San Diego.)

Jiang, J. Y., Cheung, C. K., Wang, Y., and Tsang, B. K. (2003). Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front. Biosci. 8, d222–d237.
Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVejs74%3D&md5=e603b888c0ea9da0dc79902f2d1f6a4bCAS | 12456353PubMed |

Johns, M. A., Azmitia, E. C., and Krieger, D. T. (1982). Specific in vitro uptake of serotonin by cells in the anterior pituitary of the rat. Endocrinology 110, 754–760.
Specific in vitro uptake of serotonin by cells in the anterior pituitary of the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtlKlsbg%3D&md5=7b4ab0977f9211231b2566ec0995134bCAS | 7056230PubMed |

Jørgensen, H. S. (2007). Studies on the neuroendocrine role of serotonin. Dan. Med. Bull. 54, 266–288.
| 18208678PubMed |

Koppan, M., Bodis, J., Verzar, Z., Tinneberg, H. R., and Torok, A. (2004). Serotonin may alter the pattern of gonadotrophin-induced progesterone release of human granulosa cells in superfusion system. Endocrine 24, 155–159.
Serotonin may alter the pattern of gonadotrophin-induced progesterone release of human granulosa cells in superfusion system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGrsr4%3D&md5=1a5344c0354f97436fe9786c5b82b77dCAS | 15347842PubMed |

Krsmanovic, L. Z., Hu, L., Leung, P.-H., Feng, H., and Catt, K. J. (2010). Pulsatile GnRH secretion: roles of G protein-coupled receptors, second messengers and ion channels. Mol. Cell. Endocrinol. 314, 158–163.
Pulsatile GnRH secretion: roles of G protein-coupled receptors, second messengers and ion channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFynurjI&md5=a51164a1ced20820eefe50002efc6bd7CAS | 19486924PubMed |

Labhsetwar, A. P. (1971). Effects of serotonin on spontaneous ovulation: a theory for the dual hypothalamic control of ovulation. Acta Endocrinol. (Copenh.) 68, 334–344.
| 1:CAS:528:DyaE38XkslM%3D&md5=a6766167a12036dfa4e61d36caba2484CAS |

Lacau-Mengido, I. M., Libertun, C., and Becú-Villalobos, D. (1996). Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotrophins and prolactin release in the female infantile rat. Neuroendocrinology 63, 415–421.
Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotrophins and prolactin release in the female infantile rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Oqtrw%3D&md5=5e077fddfdcd09854e4cac990bb36d9eCAS | 8738578PubMed |

Marin, P., Becamel, C., Dumuis, A., and an Bockaert, J. (2012). 5-HT receptor-associated protein networks: new targets for drug discovery in psychiatric disorders? Curr. Drug Targets 13, 28–52.
5-HT receptor-associated protein networks: new targets for drug discovery in psychiatric disorders?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSqsr8%3D&md5=a5d542e585dde856b92ef38dcd54bb0fCAS | 21777185PubMed |

Matagne, V., Rasier, G., Lebrethon, M. C., Gérard, A., and Bourguignon, J. P. (2004). Oestradiol stimulation of pulsatile gonadotrophin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology 145, 2775–2783.
Oestradiol stimulation of pulsatile gonadotrophin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt12gur4%3D&md5=9268cd2e5a81233b775756bd8cc6a3c5CAS | 14988382PubMed |

Menon, K. M., Munshi, U. M., Clouser, C. L., and Nair, A. K. (2004). Regulation of luteinizing hormone/human chorionic gonadotrophin receptor expression: a perspective. Biol. Reprod. 70, 861–866.
Regulation of luteinizing hormone/human chorionic gonadotrophin receptor expression: a perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1SitLc%3D&md5=64d050883d44358bd11f44634b28fd26CAS | 14668203PubMed |

Moguilevsky, J. A., and Wuttke, W. (2001). Changes in the control of gonadotrophin secretion by neurotransmitters during sexual development in rats. Exp. Clin. Endocrinol. Diabetes 109, 188–195.
Changes in the control of gonadotrophin secretion by neurotransmitters during sexual development in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFCnurs%3D&md5=588e1b334f855e8f1214321ec011005eCAS | 11453030PubMed |

Monroy, J., Ayala, M. E., Chavira, R., Damián-Matsumura, P., and Domínguez, R. (2003). Comparative effects of injecting 5,6-dihydroxytryptamine in the dorsal or medial raphe nuclei on rat puberty. Brain Res. Bull. 60, 307–315.
Comparative effects of injecting 5,6-dihydroxytryptamine in the dorsal or medial raphe nuclei on rat puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Cqtbw%3D&md5=fbdbef160cac003ff219607f0420b6c8CAS | 12754092PubMed |

Montes, G. S., and Luque, E. H. (1988). Effects of ovarian steroids on vaginal smears in the rat. Acta Anat. (Basel) 133, 192–199.
Effects of ovarian steroids on vaginal smears in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvVKitb0%3D&md5=1153a8e3192e380068a6fc09ef57d972CAS |

Ohno, Y. (2010). New insight into the therapeutic role of 5–HT1A receptors in central nervous system disorders. Cent. Nerv. Syst. Agents. Med. Chem. 10, 148–157.
| 1:CAS:528:DC%2BC3cXns1SltLs%3D&md5=fb12997feef19474c5bbd405e72bf9f0CAS | 20518729PubMed |

Ojeda, S. R., and Skinner, M. K. (2006) Puberty in the rat. In ‘The Physiology of Reproduction’. (Eds J. D. Neill, T. M. Plant, D. W. Pfaff, J. R. G. Challis, D. M. de Kretser, J. S. Richards and P. M. Wassarman.) pp. 2061–2126. (Raven Press: New York.)

Oldendorf, W. (1971). Brain uptake of radiolabelled amino acids, amines and hexoses after arterial injection. Am. J. Physiol. 221, 1629–1639.
| 1:CAS:528:DyaE38XitlGgtw%3D%3D&md5=b9be7ef92321396ae16c4f6017ef4ba8CAS | 5124307PubMed |

O’Steen, W. (1964). Serotonin supression of luteinization in gonadotrophin-treated immature rats. Endocrinology 74, 885–888.
Serotonin supression of luteinization in gonadotrophin-treated immature rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktlCjur0%3D&md5=e728007c4ab101b1a4f787573b139214CAS | 14190626PubMed |

Palkovits, M. (2000) Innervation and vasculature of the hypothalamus. In ‘Neuroendocrinology in Physiology and Medicine’. (Eds P. M. Conn and M. E. Freeman.) pp. 23–40. (Human Press: New Jersey.)

Paxinos, G., and Watson, C. (2007). The Rat Brain. In ‘Stereotaxic Coordinates’. (Academic Press: San Diego.)

Payette, R. F., Gershon, M. D., and Nunez, E. A. (1985). Serotonergic elements of the mammalian pituitary. Endocrinology 116, 1933–1942.
Serotonergic elements of the mammalian pituitary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7nvFarsQ%3D%3D&md5=e2fb4c654022b4ac30aea64a838faf33CAS | 3987625PubMed |

Payette, R. F., Gershon, M. D., and Nunez, E. A. (1986). Colocalization of luteinizing hormone and serotonin in secretory granules of mammalian gonadotrophs. Anat. Rec. 215, 51–58.
Colocalization of luteinizing hormone and serotonin in secretory granules of mammalian gonadotrophs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitF2ntLs%3D&md5=9a8456ea112fb775bfd563c233ee1937CAS | 2422987PubMed |

Quirk, P. L., and Siegel, R. E. (2005). The serotonin type 3A receptor facilitates luteinizing hormone release and LHβ promoter activity in immortalized pituitary gonadotropes. Endocrine 27, 37–43.
The serotonin type 3A receptor facilitates luteinizing hormone release and LHβ promoter activity in immortalized pituitary gonadotropes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVemtrw%3D&md5=7bafd26e6cea6bff8af36bdefec9804aCAS | 16077169PubMed |

Rodriguez, K. F., Couse, J. F., Jayes, F. L., Hamilton, K. J., Burns, K. A., Taniguchi, F., and Korach, K. S. (2010). Insufficient luteinizing hormone-induced intracellular signalling disrupts ovulation in preovulatory follicles lacking oestrogen receptor-β. Endocrinology 151, 2826–2834.
Insufficient luteinizing hormone-induced intracellular signalling disrupts ovulation in preovulatory follicles lacking oestrogen receptor-β.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqtb8%3D&md5=7ae936aca04a8fa26e988272c102d05bCAS | 20378682PubMed |

Rondina, D., Ponzo, O. J., Szwarcfarb, B., Carbone, S., Scacchi, P., and Moguilevsky, J. A. (2003). Effects of gabaergic and serotonergic systems on hypothalamic content of catecholamines during sexual development in female rats. Neuroendocrinol. Lett. 24, 46–49.
| 1:CAS:528:DC%2BD3sXktVOrt7w%3D&md5=b8f4592a7629a750b7696e65278c53e2CAS | 12743531PubMed |

Smith, M. J., and Jennes, L. (2001). Neural signals that regulate GnRH neurones directly during the oestrous cycle. Reproduction 122, 1–10.
Neural signals that regulate GnRH neurones directly during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGisr4%3D&md5=75e4a126fc140e03ed618c7b3c6a9974CAS | 11425324PubMed |

Tanaka, E., Baba, N., Toshida, K., and Suzuki, K. (1993). Evidence for 5–HT2 receptor involvement in the stimulation of preovulatory LH and prolactin release and ovulation in normal cycling rats. Life Sci. 52, 669–676.
Evidence for 5–HT2 receptor involvement in the stimulation of preovulatory LH and prolactin release and ovulation in normal cycling rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtFOgtbs%3D&md5=ae102fb7ffb764e0fc989879c7b5ac14CAS | 8429759PubMed |

Teresawa, E. I., and Kurian, J. R. (2012). Neuroendocrine mechanism of puberty. In ‘Hormones, Brain Function and Behaviour’. (Eds G. Fink, D. W. Faff and J. Levine.) pp. 433–484. (Academic Press: San Diego.)

Terranova, P. F., Uilenbroek, J. T., Saville, L., Horst, D., and Nakamura, Y. (1990). Serotonin enhances oestradiol production by hamster preovulatory follicles in vitro: effects of experimentally induced atresia. J. Endod. 125, 433–438.
Serotonin enhances oestradiol production by hamster preovulatory follicles in vitro: effects of experimentally induced atresia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVSqurk%3D&md5=7e71eb47e768e1fd2fcb3d13198b8df6CAS |

Vanhatalo, S., and Soinila, S. (1995). Release of false transmitter serotonin from the dopaminergic nerve terminals of the rat pituitary intermediate lobe. Neurosci. Res. 22, 367–374.
Release of false transmitter serotonin from the dopaminergic nerve terminals of the rat pituitary intermediate lobe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVCmt78%3D&md5=0af1e5aa921cf55eff718a7b2fcc1339CAS | 7478301PubMed |

Veselá, J., Rehák, P., Mihalik, J., Czikková, S., Pokorný, J., and Koppel, J. (2003). Expression of serotonin receptors in mouse oocytes and preimplantation embryos. Physiol. Res. 52, 223–228.
| 12678665PubMed |

Wada, K., Hu, L., Mores, N., Navarro, C. E., Fuda, H., Krsmanovic, L. Z., and Catt, K. J. (2006). Serotonin (5-HT) receptor subtypes mediate specific modes of 5-HT-induced signalling and regulation of neurosecretion in gonadotrophin-releasing hormone neurons. Mol. Endocrinol. 20, 125–135.
Serotonin (5-HT) receptor subtypes mediate specific modes of 5-HT-induced signalling and regulation of neurosecretion in gonadotrophin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsleltg%3D%3D&md5=603396b16206fcbe299c17442779aab3CAS | 16109737PubMed |

Walters, K. A., Allan, C. M., and Handelsman, D. J. (2008). Androgen actions and the ovary. Biol. Reprod. 78, 380–389.
Androgen actions and the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSltb8%3D&md5=dc706973034c0220796a087e8abb79cdCAS | 18003945PubMed |

Westlund, K. N., and Childs, G. V. (1982). Localization of serotonin fibres in the rat adenohypophysis. Endocrinology 111, 1761–1763.
Localization of serotonin fibres in the rat adenohypophysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtV2itLs%3D&md5=3bf6a062914c0b4d2379be2cc4cd5caaCAS | 6751803PubMed |

Wilson, C. A., Horth, C. E., McNeilly, A., and McDonald, P. G. (1975). Effect of serotonin and progesterone on induced ovulation in immature rats. J. Endocrinol. 64, 337–347.
Effect of serotonin and progesterone on induced ovulation in immature rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktVWisLY%3D&md5=3103464862ab0608b56734acb89c000eCAS | 1117243PubMed |

Yie, S. M., Niles, L. P., and Younglai, E. V. (1995). Melatonin receptors on human granulosa cell membranes. J. Clin. Endocrinol. Metab. 80, 1747–1749.
Melatonin receptors on human granulosa cell membranes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3mtlOntw%3D%3D&md5=d4bea8c9633570517c020e580fc47526CAS | 7745030PubMed |