Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Potential role of maternal lineage in the thoroughbred breeding strategy

Xiang Lin A , Shi Zhou B , Li Wen A D , Allan Davie B , Xinkui Yao C D , Wujun Liu C and Yong Zhang A
+ Author Affiliations
- Author Affiliations

A Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sports, Tianjin, 300381, China.

B School of Health and Human Sciences, Southern Cross University, Lismore, NSW 2480, Australia.

C College of Animal Sciences, Xinjiang Agricultural University, Urumuqi, 830052, China.

D Corresponding authors. Emails: yxk61@126.com; wenli34@hotmail.com

Reproduction, Fertility and Development 28(11) 1704-1711 https://doi.org/10.1071/RD15063
Submitted: 29 May 2014  Accepted: 1 April 2015   Published: 5 May 2015

Abstract

Many studies have focused on identifying the genes or single nucleotide polymorphisms associated with the athletic ability of thoroughbreds, but few have considered differences in maternal and paternal heritability of athletic ability. Herein, we report on our association study of career race performances of 675 Australian thoroughbreds with their pedigrees. Racing performance data (prize money per start) were collected from the Bloodhound database. The performance of all horses was categorised as either poor or elite athletic achievement. Then, 675 foals were divided by their parents’ performance (elite or poor) into four groups: (1) elite dams and elite sires; (2) elite dams and poor sires; (3) poor dams and elite sires; and (4) poor dams and poor sires. The performance of foals was then compared between the four groups. The results show that the heritability of race performance between dams and foals (r = 0.141, P < 0.001) is much higher than that between sires and foals (r = 0.035, P = 0.366), and that this difference is statistically significant (P < 0.05). We also examined the effect of the child-bearing age of dams and sires on the ratio of elite foals. We found a strong correlation between the number of elite foals and dams’ child-bearing age (r = –0.105, P < 0.001), with the ratio of elite offspring reaching a high level between a child-bearing age of 8 and 11 years (χ2 = 14.31, d.f. = 1, P < 0.001). These findings suggest that the maternal line may play an important role in the selective breeding of athletic performance in thoroughbreds.

Additional keywords: athletic performance, birth age, horse breeding, mitochondrial DNA.


References

Allen, W. R., Wilsher, S., Turnbull, C., Stewart, F., Ousey, J., Rossdale, P. D., and Fowden, A. L. (2002). Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero. Reproduction 123, 445–453.
Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero.CrossRef | 1:CAS:528:DC%2BD38Xit1Cls70%3D&md5=f3fa485a4384f926cbb34ade391d9760CAS | 11882022PubMed | open url image1

Australian Racing Board. (2011). ‘Australian Pattern Committee Procedure Manual.’ Available at: http://www.australianracingboard.com.au/uploadimg/AusPCProcedureManual.pdf [verified 20 February 2013].

Baumer, A., Zhang, C., Linnane, A. W., and Nagley, P. (1994). Age-related human mtDNA deletions: a heterogeneous set of deletions arising at a single pair of directly repeated sequences. Am. J. Hum. Genet. 54, 618–630.
| 1:CAS:528:DyaK2MXhtFWrtg%3D%3D&md5=01cbd0f6a4ba904ecfd53546b0ed2a55CAS | 8128959PubMed | open url image1

Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E., and Abdalla, H. I. (1995). Birth weight: nature or nurture? Early Hum. Dev. 42, 29–35.
Birth weight: nature or nurture?CrossRef | 1:STN:280:DyaK2MvgtFyqug%3D%3D&md5=12ce50d15c7c77f9c0d769d387469edfCAS | 7671843PubMed | open url image1

Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., Beal, M. F., and Wallace, D. C. (1992). Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2, 324–329.
Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age.CrossRef | 1:CAS:528:DyaK3sXnvVGntQ%3D%3D&md5=b19a5e3667f4a652995d2e7da1531cf6CAS | 1303288PubMed | open url image1

Cortopassi, G., and Wang, E. (1995). Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and cell death. Biochim. Biophys. Acta 1271, 171–176.
Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and cell death.CrossRef | 7599205PubMed | open url image1

Cunningham, E. P., Dooley, J. J., Splan, R. K., and Bradley, D. G. (2001). Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 32, 360–364.
Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses.CrossRef | 1:CAS:528:DC%2BD38Xlt1yhsw%3D%3D&md5=de58702a6a058c2cff4d4a72de4138f0CAS | 11736806PubMed | open url image1

Das, J. (2006). The role of mitochondrial respiration in physiological and evolutionary adaptation. BioEssays 28, 890–901.
The role of mitochondrial respiration in physiological and evolutionary adaptation.CrossRef | 1:CAS:528:DC%2BD28XhtVKqsrvF&md5=e63ba8c65b664829d680677e7958d5f8CAS | 16937356PubMed | open url image1

Essén-Gustavsson, B., and Lindholm, A. (1985). Muscle fibre characteristics of active and inactive standardbred horses. Equine Vet. J. 17, 434–438.
Muscle fibre characteristics of active and inactive standardbred horses.CrossRef | 4076157PubMed | open url image1

Gallagher, J. R., and McMeniman, N. P. (1988). The nutritional status of pregnant and non-pregnant mares grazing south east Queensland pastures. Equine Vet. J. 20, 414–416.
The nutritional status of pregnant and non-pregnant mares grazing south east Queensland pastures.CrossRef | 1:STN:280:DyaL1M7gslWntA%3D%3D&md5=1390bb4d1dc31e28e87aee94a4812317CAS | 3215165PubMed | open url image1

Godfray, H. C., and Johnstone, R. A. (2000). Begging and bleating: the evolution of parent-offspring signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1581–1591.
Begging and bleating: the evolution of parent-offspring signalling.CrossRef | 1:STN:280:DC%2BD3M7ksVKmsw%3D%3D&md5=46af9b1eebe7178ea7eed1c5b3b82540CAS | 11127903PubMed | open url image1

Hattori, K., Tanaka, M., Sugiyama, S., Obayashi, T., Ito, T., Satake, T., Hanaki, Y., Asai, J., Nagano, M., and Ozawa, T. (1991). Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am. Heart J. 121, 1735–1742.
Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia.CrossRef | 1:STN:280:DyaK3M3ktV2nsQ%3D%3D&md5=846663e0c3b8bb2518c3004117ee103cCAS | 2035386PubMed | open url image1

Jackson, M., Vizard, A., Anderson, G., Clarke, A., and Whitton, R. (2011). Association between the purchase price of thoroughbred yearlings and their performance during the 2- and 3-year-old racing seasons. Aust. Vet. J. 89, 388–393.
Association between the purchase price of thoroughbred yearlings and their performance during the 2- and 3-year-old racing seasons.CrossRef | 21933166PubMed | open url image1

Kenneth, W. H., Baymond, J. G., and Andris, J. K. (2008). ‘Equine Exercise Physiology: The Science of Exercise in the Athletic Horse.’ (Saunders: Philadelphia.)

Kim, K. C., Cho, H. I., and Kim, W. (2012). MtDNA haplogroups and elite Korean athlete status. Int. J. Sports Med. 33, 76–80.
MtDNA haplogroups and elite Korean athlete status.CrossRef | 1:CAS:528:DC%2BC38XjvVSlu7g%3D&md5=41149b46916a28138b85577ff271de03CAS | 22134884PubMed | open url image1

Maegawa, S., Hinkal, G., Kim, H. S., Shen, L., Zhang, L., Zhang, J., Zhang, N., Liang, S., Donehower, L. A., and Issa, J. P. (2010). Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340.
Widespread and tissue specific age-related DNA methylation changes in mice.CrossRef | 1:CAS:528:DC%2BC3cXjtlCktbs%3D&md5=3b20eff6459364fc8310c16cd3cd5f9fCAS | 20107151PubMed | open url image1

Martínez-Redondo, D., Marcuello, A., Casajús, J. A., Ara, I., Dahmani, Y., Montoya, J., Ruiz-Pesini, E., López-Pérez, M. J., and Díez-Sánchez, C. (2010). Human mitochondrial haplogroup H: the highest Vo2max consumer: is it a paradox? Mitochondrion 10, 102–107.
Human mitochondrial haplogroup H: the highest Vo2max consumer: is it a paradox?CrossRef | 19900587PubMed | open url image1

McBane, S. (1997). ‘The Illustrated Encyclopedia of Horse Breeds.’ (Wellfleet Press: New York.)

McGreevy, P. (2004). ‘Equine Behaviour: A Guide for Veterinarians and Equine Scientists.’ (Saunders: Edinburgh.)

Mikami, E., Fuku, N., Takahashi, H., Ohiwa, N., Scott, R. A., Pitsiladis, Y. P., Higuchi, M., Kawahara, T., and Tanaka, M. (2011). Mitochondrial haplogroups associated with elite Japanese athlete status. Br. J. Sports Med. 45, 1179–1183.
Mitochondrial haplogroups associated with elite Japanese athlete status.CrossRef | 20551160PubMed | open url image1

Moore, T. (2012). Review: Parent–offspring conflict and the control of placental function. Placenta 33, S33–S36.
Review: Parent–offspring conflict and the control of placental function.CrossRef | 22153682PubMed | open url image1

Moore, T., and Haig, D. (1991). Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49.
Genomic imprinting in mammalian development: a parental tug-of-war.CrossRef | 1:STN:280:DyaK3M3ktVGmug%3D%3D&md5=2b173257d00b174e80a9b6b007eabfeaCAS | 2035190PubMed | open url image1

Nogales-Gadea, G., Pinos, T., Ruiz, J. R., Marzo, P. F., Fiuza-Luces, C., Lopez-Gallardo, E., Ruiz-Pesini, E., Martin, M. A., Arenas, J., Moran, M., Andreu, A. L., and Lucia, A. (2011). Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion 11, 905–908.
Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort.CrossRef | 1:CAS:528:DC%2BC3MXhtl2qs7fJ&md5=1f0d3cb1d31e3efa5233454aa6cc54c8CAS | 21856449PubMed | open url image1

Parker, R. (2007). ‘Equine Science.’ (Delmar Cengage Learning: Clifton Park, NY)

Parker, G. A., and MacNair, M. R. (1978). Models of parent–offspring conflict. I. Monogamy. Anim. Behav. 26, 97–110.
Models of parent–offspring conflict. I. Monogamy.CrossRef | 1:STN:280:DyaE1c7kt1yhtQ%3D%3D&md5=bbac01d45cdbac72884342fe67e878a6CAS | 637373PubMed | open url image1

Pösö, A. R., Essen-Gustavsson, B., and Persson, S. G. (1993). Metabolic response to standardised exercise test in standardbred trotters with red cell hypervolaemia. Equine Vet. J. 25, 527–531.
Metabolic response to standardised exercise test in standardbred trotters with red cell hypervolaemia.CrossRef | 8276001PubMed | open url image1

Ronéus, M., Lindholm, A., and Asheim, A. (1991). Muscle characteristics in thoroughbreds of different ages and sexes. Equine Vet. J. 23, 207–210.
Muscle characteristics in thoroughbreds of different ages and sexes.CrossRef | 1884703PubMed | open url image1

Ronéus, N., Essén-Gustavsson, B., Lindholm, A., and Eriksson, Y. (1994). Plasma lactate response to submaximal and maximal exercise tests with training, and its relationship to performance and muscle characteristics in standardbred trotters. Equine Vet. J. 26, 117–121.
Plasma lactate response to submaximal and maximal exercise tests with training, and its relationship to performance and muscle characteristics in standardbred trotters.CrossRef | 8575372PubMed | open url image1

Rönn, T., Poulsen, P., Hansson, O., Holmkvist, J., Almgren, P., Nilsson, P., Tuomi, T., Isomaa, B., Groop, L., Vaag, A., and Ling, C. (2008). Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia 51, 1159–1168.
Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle.CrossRef | 18488190PubMed | open url image1

Scott, R. A., Wilson, R. H., Goodwin, W. H., Moran, C. N., Georgiades, E., Wolde, B., and Pitsiladis, Y. P. (2005). Mitochondrial DNA lineages of elite Ethiopian athletes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140, 497–503.
Mitochondrial DNA lineages of elite Ethiopian athletes.CrossRef | 15694598PubMed | open url image1

Scott, R. A., Fuku, N., Onywera, V. O., Boit, M., Wilson, R. H., Tanaka, M., Goodwin, W., and Pitsiladis, Y. P. (2009). Mitochondrial haplogroups associated with elite Kenyan athlete status. Med. Sci. Sports Exerc. 41, 123–128.
Mitochondrial haplogroups associated with elite Kenyan athlete status.CrossRef | 19092698PubMed | open url image1

Shen, Y. Y., Liang, L., Zhu, Z. H., Zhou, W. P., Irwin, D. M., and Zhang, Y. P. (2010). Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc. Natl Acad. Sci. USA 107, 8666–8671.
Adaptive evolution of energy metabolism genes and the origin of flight in bats.CrossRef | 1:CAS:528:DC%2BC3cXmsFWmtLY%3D&md5=4d8d3dd75ea62e35d51bc951db556facCAS | 20421465PubMed | open url image1

Spence, N. J. (2008). The long-term consequences of childbearing: physical and psychological well-being of mothers in later life. Res. Aging 30, 722–751.
The long-term consequences of childbearing: physical and psychological well-being of mothers in later life.CrossRef | 19122886PubMed | open url image1

Trivers, R. L., and Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92.
Natural selection of parental ability to vary the sex ratio of offspring.CrossRef | 1:STN:280:DyaE3s%2Fls1Wqsg%3D%3D&md5=6c0628b71b5bf9c09e3733a122492b17CAS | 4682135PubMed | open url image1

Trombetta, B., Cruciani, F., Underhill, P. A., Sellitto, D., and Scozzari, R. (2010). Footprints of X-to-Y gene conversion in recent human evolution. Mol. Biol. Evol. 27, 714–725.
Footprints of X-to-Y gene conversion in recent human evolution.CrossRef | 1:CAS:528:DC%2BC3cXitlartL4%3D&md5=eecf9a12682feeea9ebcbbf61d1b9cb9CAS | 19812029PubMed | open url image1

Tyler-Smith, C., and Xue, Y. (2012). Sibling rivalry among paralogs promotes evolution of the human brain. Cell 149, 737–739.
Sibling rivalry among paralogs promotes evolution of the human brain.CrossRef | 1:CAS:528:DC%2BC38XntFantrc%3D&md5=c01df107ecd141becaf85c5bc5b7bfb4CAS | 22579279PubMed | open url image1

United States Agency for International Development (2008). ‘Healthy Timing and Spacing of Pregnancy.’ Available at: http://www.basics.org/reports/FinalReport/HTSP-Final-Report_BASICS.pdf [verified 10 June 2013.]

Velie, B. D., Wade, C. M., and Hamilton, N. A. (2013). Profiling the careers of thoroughbred horses racing in Australia between 2000 and 2010. Equine Vet. J. 45, 182–186.
Profiling the careers of thoroughbred horses racing in Australia between 2000 and 2010.CrossRef | 1:STN:280:DC%2BC38fkslKnsQ%3D%3D&md5=dc690faddcaa8606a7dd03993575c3dfCAS | 22853620PubMed | open url image1

Vilà, C., Leonard, J. A., Götherström, A., Marklund, S., Sandberg, K., Lidén, K., Wayne, R. K., and Ellegren, H. (2001). Widespread origins of domestic horse lineages. Science 291, 474–477.
Widespread origins of domestic horse lineages.CrossRef | 11161199PubMed | open url image1

Wallace, D. C. (2010). Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 51, 440–450.
| 1:CAS:528:DC%2BC3cXnsVWgtL8%3D&md5=62adbec3694ac3cdf80286395258d37eCAS | 20544884PubMed | open url image1

Wallner, B., Vogl, C., Shukla, P., Burgstaller, J. P., Druml, T., and Brem, G. (2013). Identification of genetic variation on the horse Y chromosome and the tracing of male founder lineages in modern breeds. PLoS One 8, e60015.
Identification of genetic variation on the horse Y chromosome and the tracing of male founder lineages in modern breeds.CrossRef | 1:CAS:528:DC%2BC3sXmtFWrurY%3D&md5=57447e20b1f3c274b6eda64c87903916CAS | 23573227PubMed | open url image1

Wilson, A. J., and Rambaut, A. (2008). Breeding racehorses: what price good genes? Biol. Lett. 4, 173–175.
Breeding racehorses: what price good genes?CrossRef | 18089517PubMed | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (356 KB) Export Citation Cited By (1)