Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Adoptive cell therapy with induced regulatory T cells normalises the abortion rate in abortion-prone mice

F. Idali A F * , S. Rezaii-nia A * , H. Golshahi B , R. Fatemi A , M. M. Naderi C , L. Ballaii Goli A , A. H. Zarnani A D and M. Jeddi-Tehrani E
+ Author Affiliations
- Author Affiliations

A Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Evin, Tehran, Iran.

B Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Evin, Tehran, Iran.

C Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Evin, Tehran, Iran.

D Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Enghelab Ave, Tehran, Iran.

E Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.

F Corresponding author. Email: f.ideali@ari.ir; farahid@yahoo.com

Reproduction, Fertility and Development - https://doi.org/10.1071/RD20063
Submitted: 3 March 2020  Accepted: 13 November 2020   Published online: 15 December 2020

Abstract

Ovarian hormones drive in vivo generation of regulatory T cells (Tregs) during pregnancy. Little is known about the therapeutic potential of in vitro hormone-derived Tregs in pregnancy loss. We investigated the effects of hormone-induced Tregs in a murine model of abortion. CD4+CD25 T cells were isolated from the spleens of CBA/J mice and stimulated with either 17β-oestradiol (E2), progesterone (P4) or transforming growth factor-β1 (TGFB1) plus retinoic acid (RA) for 4 days to generate induced Tregs (iTregs). On Days 1–4 of gestation, DBA/2-mated pregnant CBA/J female mice (abortion prone) were injected intravenously with iTregs or Tregs isolated from normal BALB/c-mated pregnant CBA/J mice (np-Tregs). On Day 14, the number of resorbed fetuses was assessed. Serum interferon (IFN)-γ and uterine forkhead box p3 (Foxp3) expression was analysed by ELISA and immunohistochemistry respectively. Using a 3H-thymidine incorporation assay, isolated CD4+CD25+ Tregs induced by the different treatments suppressed the proliferation of CD4+CD25 T cells. Adoptive transfer of iTregs (from all induction groups) significantly decreased fetal resorption in abortion-prone mice. There were no significant changes in serum IFN-γ concentrations after the adoptive transfer of iTregs or np-Tregs. Immunohistochemistry revealed significantly higher Foxp3 expression in gravid uteri from mice injected with np-Tregs and P4-induced iTregs than in the phosphate-buffered saline-treated group. The findings of this study indicate a potential therapeutic benefit of in vitro-induced Tregs in patients with recurrent abortion.

Graphical Abstract Image

Keywords: abortion, induced regulatory T cells, 17β-oestradiol, progesterone, transforming growth factor β1.


References

Aluvihare, V. R., Kallikourdis, M., and Betz, A. G. (2004). Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271.
Regulatory T cells mediate maternal tolerance to the fetus.Crossref | GoogleScholarGoogle Scholar | 14758358PubMed |

Apostolou, I., Verginis, P., Kretschmer, K., Polansky, J., Huhn, J., and Von Boehmer, H. (2008). Peripherally induced Treg: mode, stability, and role in specific tolerance. J. Clin. Immunol. 28, 619–624.
Peripherally induced Treg: mode, stability, and role in specific tolerance.Crossref | GoogleScholarGoogle Scholar | 18841451PubMed |

Bacchetta, R., Passerini, L., Gambineri, E., Dai, M., Allan, S. E., Perroni, L., Dagna-Bricarelli, F., Sartirana, C., Matthes-Martin, S., Lawitschka, A., Azzari, C., Ziegler, S. F., Levings, M. K., and Roncarolo, M. G. (2006). Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722.
Defective regulatory and effector T cell functions in patients with FOXP3 mutations.Crossref | GoogleScholarGoogle Scholar | 16741580PubMed |

Brazão, V., Kuehn, C. C., Dos Santos, C. D., Da Costa, C. M., Júnior, J. C., and Carraro-Abrahāo, A. A. (2015). Endocrine and immune system interactions during pregnancy. Immunobiology 220, 42–47.
Endocrine and immune system interactions during pregnancy.Crossref | GoogleScholarGoogle Scholar | 25257860PubMed |

Carmichael, S. L., Shaw, G. M., Laurent, C., Croughan, M. S., Olney, R. S., and Lammer, E. J. (2005). Maternal progestin intake and risk of hypospadias. Arch. Pediatr. Adolesc. Med. 159, 957–962.
Maternal progestin intake and risk of hypospadias.Crossref | GoogleScholarGoogle Scholar | 16203941PubMed |

Chen, G. Y., Chen, C., Wang, L., Chang, X., Zheng, P., and Liu, Y. (2008a). Cutting edge: broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J. Immunol. 180, 5163–5166.
Cutting edge: broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells.Crossref | GoogleScholarGoogle Scholar | 18390696PubMed |

Chen, M. L., Yan, B. S., Bando, Y., Kuchroo, V. K., and Weiner, H. L. (2008b). Latency-associated peptide identifies a novel CD4+CD25+ regulatory T cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis. J. Immunol. 180, 7327–7337.
Latency-associated peptide identifies a novel CD4+CD25+ regulatory T cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis.Crossref | GoogleScholarGoogle Scholar | 18490732PubMed |

Chen, T., Darrasse-Jeze, G., Bergot, A. S., Courau, T., Churlaud, G., Valdivia, K., Strominger, J. L., Ruocco, M. G., Chaouat, G., and Klatzmann, D. (2013). Self-specific memory regulatory T cells protect embryos at implantation in mice. J. Immunol. 191, 2273–2281.
Self-specific memory regulatory T cells protect embryos at implantation in mice.Crossref | GoogleScholarGoogle Scholar | 23913969PubMed |

Dante, G., Vaccaro, V., and Facchinetti, F. (2013). Use of progestagens during early pregnancy. Facts Views Vis. ObGyn 5, 66–71.
| 24753930PubMed |

Day, J. R., Ogren, L. M., and Talamantes, F. (1986). The effect of hypophysectomy on serum placental lactogen and progesterone in the mouse. Endocrinology 119, 898–903.
The effect of hypophysectomy on serum placental lactogen and progesterone in the mouse.Crossref | GoogleScholarGoogle Scholar | 3732149PubMed |

Fatemi, R., Mirzadegan, E., Vahedian, Z., Zarnani, A. H., Jeddi-Tehrani, M., and Idali, F. (2017). Low 17beta-estradiol levels are better inducers of regulatory conditioned T cells in-vitro. Iran. J. Immunol. 14, 159–171.
| 28630386PubMed |

Feng, G., Wood, K. J., and Bushell, A. (2008). Interferon-gamma conditioning ex vivo generates CD25+CD62L+Foxp3+ regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation 86, 578–589.
Interferon-gamma conditioning ex vivo generates CD25+CD62L+Foxp3+ regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy.Crossref | GoogleScholarGoogle Scholar | 18724229PubMed |

Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe, K., Chang, H. D., Bopp, T., Schmitt, E., Klein-Hessling, S., Serfling, E., Hamann, A., and Huehn, J. (2007). Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38.
Epigenetic control of the foxp3 locus in regulatory T cells.Crossref | GoogleScholarGoogle Scholar | 17298177PubMed |

Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336.
Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.Crossref | GoogleScholarGoogle Scholar | 12612578PubMed |

Guerin, L. R., Moldenhauer, L. M., Prins, J. R., Bromfield, J. J., Hayball, J. D., and Robertson, S. A. (2011). Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol. Reprod. 85, 397–408.
Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment.Crossref | GoogleScholarGoogle Scholar | 21389340PubMed |

Hall, B. M., Verma, N. D., Tran, G. T., and Hodgkinson, S. J. (2011). Distinct regulatory CD4+ T cell subsets; differences between naive and antigen specific T regulatory cells. Curr. Opin. Immunol. 23, 641–647.
Distinct regulatory CD4+ T cell subsets; differences between naive and antigen specific T regulatory cells.Crossref | GoogleScholarGoogle Scholar | 21840184PubMed |

Haribhai, D., Lin, W., Edwards, B., Ziegelbauer, J., Salzman, N. H., Carlson, M. R., Li, S. H., Simpson, P. M., Chatila, T. A., and Williams, C. B. (2009). A central role for induced regulatory T cells in tolerance induction in experimental colitis. J. Immunol. 182, 3461–3468.
A central role for induced regulatory T cells in tolerance induction in experimental colitis.Crossref | GoogleScholarGoogle Scholar | 19265124PubMed |

Haxhinasto, S., Mathis, D., and Benoist, C. (2008). The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574.
The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells.Crossref | GoogleScholarGoogle Scholar | 18283119PubMed |

Hughes, G. C., Clark, E. A., and Wong, A. H. (2013). The intracellular progesterone receptor regulates CD4+ T cells and T cell-dependent antibody responses. J. Leukoc. Biol. 93, 369–375.
The intracellular progesterone receptor regulates CD4+ T cells and T cell-dependent antibody responses.Crossref | GoogleScholarGoogle Scholar | 23307939PubMed |

Ito, A., Bebo, B. F., Matejuk, A., Zamora, A., Silverman, M., Fyfe-Johnson, A., and Offner, H. (2001). Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J. Immunol. 167, 542–552.
Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice.Crossref | GoogleScholarGoogle Scholar | 11418693PubMed |

Kim, H. P., and Leonard, W. J. (2007). CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551.
CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation.Crossref | GoogleScholarGoogle Scholar | 17591856PubMed |

Lee, J. H., Ulrich, B., Cho, J., Park, J., and Kim, C. H. (2011). Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J. Immunol. 187, 1778–1787.
Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells.Crossref | GoogleScholarGoogle Scholar | 21768398PubMed |

Lee, J. H., Lydon, J. P., and Kim, C. H. (2012). Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur. J. Immunol. 42, 2683–2696.
Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability.Crossref | GoogleScholarGoogle Scholar | 22740122PubMed |

Mao, G., Wang, J., Kang, Y., Tai, P., Wen, J., Zou, Q., Li, G., Ouyang, H., Xia, G., and Wang, B. (2010). Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology 151, 5477–5488.
Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice.Crossref | GoogleScholarGoogle Scholar | 20844003PubMed |

Offner, H. (2004). Neuroimmunoprotective effects of estrogen and derivatives in experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. J. Neurosci. Res. 78, 603–624.
Neuroimmunoprotective effects of estrogen and derivatives in experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 15515048PubMed |

Pantaleo, M., Piccinno, M., Roncetti, M., Mutinati, M., Rizzo, A., and Sciorsci, R. L. (2013). Evaluation of serum concentrations of interleukin (IL)-4, IL-10, and IL-12 during pregnancy in bitches. Theriogenology 79, 970–973.
Evaluation of serum concentrations of interleukin (IL)-4, IL-10, and IL-12 during pregnancy in bitches.Crossref | GoogleScholarGoogle Scholar | 23422356PubMed |

Polanczyk, M. J., Carson, B. D., Subramanian, S., Afentoulis, M., Vandenbark, A. A., Ziegler, S. F., and Offner, H. (2004). Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol. 173, 2227–2230.
Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment.Crossref | GoogleScholarGoogle Scholar | 15294932PubMed |

Polanczyk, M. J., Hopke, C., Vandenbark, A. A., and Offner, H. (2006). Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J. Neurosci. Res. 84, 370–378.
Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway.Crossref | GoogleScholarGoogle Scholar | 16676326PubMed |

Powell, J. D., and Delgoffe, G. M. (2010). The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33, 301–311.
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism.Crossref | GoogleScholarGoogle Scholar | 20870173PubMed |

Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164.
| 7636184PubMed |

Salem, M. L. (2004). Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr. Drug Targets Inflamm. Allergy 3, 97–104.
Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production.Crossref | GoogleScholarGoogle Scholar | 15032646PubMed |

Sasaki, Y., Sakai, M., Miyazaki, S., Higuma, S., Shiozaki, A., and Saito, S. (2004). Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353.
Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases.Crossref | GoogleScholarGoogle Scholar | 14997000PubMed |

Selvaraj, R. K., and Geiger, T. L. (2008). Mitigation of experimental allergic encephalomyelitis by TGF-beta induced Foxp3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance. J. Immunol. 180, 2830–2838.
Mitigation of experimental allergic encephalomyelitis by TGF-beta induced Foxp3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance.Crossref | GoogleScholarGoogle Scholar | 18292504PubMed |

Shima, T., Sasaki, Y., Itoh, M., Nakashima, A., Ishii, N., Sugamura, K., and Saito, S. (2010). Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 85, 121–129.
Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice.Crossref | GoogleScholarGoogle Scholar | 20439117PubMed |

Shima, T., Inada, K., Nakashima, A., Ushijima, A., Ito, M., Yoshino, O., and Saito, S. (2015). Paternal antigen-specific proliferating regulatory T cells are increased in uterine-draining lymph nodes just before implantation and in pregnant uterus just after implantation by seminal plasma-priming in allogeneic mouse pregnancy. J. Reprod. Immunol. 108, 72–82.
Paternal antigen-specific proliferating regulatory T cells are increased in uterine-draining lymph nodes just before implantation and in pregnant uterus just after implantation by seminal plasma-priming in allogeneic mouse pregnancy.Crossref | GoogleScholarGoogle Scholar | 25817463PubMed |

Stewart, D. R., Overstreet, J. W., Nakajima, S. T., and Lasley, B. L. (1993). Enhanced ovarian steroid secretion before implantation in early human pregnancy. J. Clin. Endocrinol. Metab. 76, 1470–1476.
| 8501152PubMed |

Tai, P., Wang, J., Jin, H., Song, X., Yan, J., Kang, Y., Zhao, L., An, X., Du, X., Chen, X., Wang, S., Xia, G., and Wang, B. (2008). Induction of regulatory T cells by physiological level estrogen. J. Cell. Physiol. 214, 456–464.
Induction of regulatory T cells by physiological level estrogen.Crossref | GoogleScholarGoogle Scholar | 17654501PubMed |

Teles, A., Zenclussen, A. C., and Schumacher, A. (2013). Regulatory T cells are baby’s best friends. Am. J. Reprod. Immunol. 69, 331–339.
Regulatory T cells are baby’s best friends.Crossref | GoogleScholarGoogle Scholar | 23289369PubMed |

Wahabi, H. A., Fayed, A. A., Esmaeil, S. A., and Bahkali, K. H. (2018). Progestogen for treating threatened miscarriage. Cochrane Database Syst. Rev. 8, CD005943.
| 30081430PubMed |

Yang, J., Liu, L., Yang, Y., Kong, N., Jiang, X., Sun, J., and Xie, R. (2017). Adoptive cell therapy of induced regulatory T cells expanded by tolerogenic dendritic cells on murine autoimmune arthritis. J. Immunol. Res. 2017, 7573154.
Adoptive cell therapy of induced regulatory T cells expanded by tolerogenic dendritic cells on murine autoimmune arthritis.Crossref | GoogleScholarGoogle Scholar | 29423417PubMed |

Zenclussen, A. C., Gerlof, K., Zenclussen, M. L., Sollwedel, A., Bertoja, A. Z., Ritter, T., Kotsch, K., Leber, J., and Volk, H. D. (2005). Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am. J. Pathol. 166, 811–822.
Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model.Crossref | GoogleScholarGoogle Scholar | 15743793PubMed |

Ziegler, S. F. (2006). FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209–226.
FOXP3: of mice and men.Crossref | GoogleScholarGoogle Scholar | 16551248PubMed |