Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Notch signalling regulates steroidogenesis in mouse ovarian granulosa cells

Yishu Wang A , Enhang Lu A , Riqiang Bao A , Ping Xu B , Fen Feng C , Weihui Wen D , Qiming Dong A , Chuan Hu C , Li Xiao C , Min Tang C , Gang Li C , Jing Wang D and Chunping Zhang C E
+ Author Affiliations
- Author Affiliations

A Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China.

B Second Clinical College, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China.

C Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China.

D Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China.

E Corresponding author. Email: zhangcp81@163.com

Reproduction, Fertility and Development 31(6) 1091-1103 https://doi.org/10.1071/RD18281
Submitted: 12 June 2018  Accepted: 17 January 2019   Published: 4 March 2019

Abstract

The Notch signalling pathway in the mammalian ovary regulates granulosa cell proliferation. However, the effects of Notch signalling on steroidogenesis are unclear. In this study we cultured mouse ovarian granulosa cells from preantral follicles in vitro and observed the effect of Notch signalling on steroidogenesis through overexpression, knockdown and inhibition of Notch signalling. Activation of Notch signalling decreased progesterone and oestrogen secretion. In contrast, inhibition of Notch signalling increased the production of progesterone and oestrogen. Expression of the genes for steroidogenic-related enzymes, including 3β-hydroxysteroid dehydrogenase, p450 cholesterol side-chain cleavage enzyme and aromatase, was repressed after stimulation of Notch signalling. The expression of upstream transcription factors, including steroidogenic factor 1 (SF1), Wilms’ tumour 1 (Wt1), GATA-binding protein 4 (Gata4) and Gata6, was also inhibited after stimulation of Notch signalling. Production of interleukin (IL)-6 was positively correlated with Notch signalling and negatively correlated with the expression of these transcription factors and enzymes. In conclusion, Notch signalling regulated progesterone and oestrogen secretion by affecting the expression of upstream transcription factors SF1, Wt1, Gata4 and Gata6, as well as downstream steroidogenic-related enzymes. IL-6, which may be regulated directly by Notch signalling, may contribute to this process. Our findings add to the understanding of the diverse functions of Notch signalling in the mammalian ovary.

Additional keywords: interleukin-6, oestrogen, progesterone.


References

Accialini, P., Hernandez, S. F., Bas, D., Pazos, M. C., Irusta, G., Abramovich, D., and Tesone, M. (2015). A link between Notch and progesterone maintains the functionality of the rat corpus luteum. Reproduction 149, 1–10.
A link between Notch and progesterone maintains the functionality of the rat corpus luteum.Crossref | GoogleScholarGoogle Scholar | 25433026PubMed |

Akhtar, M., Wright, J. N., and Lee–Robichaud, P. (2011). A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J. Steroid Biochem. Mol. Biol. 125, 2–12.
A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17).Crossref | GoogleScholarGoogle Scholar | 21094255PubMed |

Artavanis–Tsakonas, S., Rand, M. D., and Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.
Notch signaling: cell fate control and signal integration in development.Crossref | GoogleScholarGoogle Scholar | 10221902PubMed |

Bennett, J., Wu, Y. G., Gossen, J., Zhou, P., and Stocco, C. (2012). Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology 153, 2474–2485.
Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility.Crossref | GoogleScholarGoogle Scholar | 22434075PubMed |

Bornstein, S. R., Rutkowski, H., and Vrezas, I. (2004). Cytokines and steroidogenesis. Mol. Cell. Endocrinol. 215, 135–141.
Cytokines and steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 15026186PubMed |

Call, K. M., Glaser, T., Ito, C. Y., Buckler, A. J., Pelletier, J., Haber, D. A., Rose, E. A., Kral, A., Yeger, H., Lewis, W. H., and Jones, C. (1990). Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60, 509–520.
Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus.Crossref | GoogleScholarGoogle Scholar | 2154335PubMed |

Chen, C. L., Fu, X. F., Wang, L. Q., Wang, J. J., Ma, H. G., Cheng, S. F., Hou, Z. M., Ma, J. M., Quan, G. B., Shen, W., and Li, L. (2014). Primordial follicle assembly was regulated by Notch signaling pathway in the mice. Mol. Biol. Rep. 41, 1891–1899.
Primordial follicle assembly was regulated by Notch signaling pathway in the mice.Crossref | GoogleScholarGoogle Scholar | 24430295PubMed |

Chen, X., Gong, L., Ou, R., Zheng, Z., Chen, J., Xie, F., Huang, X., Qiu, J., Zhang, W., Jiang, Q., Yang, Y., Zhu, H., Shi, Z., and Yan, X. (2016). Sequential combination therapy of ovarian cancer with cisplatin and γ-secretase inhibitor MK-0752. Gynecol. Oncol. 140, 537–544.
Sequential combination therapy of ovarian cancer with cisplatin and γ-secretase inhibitor MK-0752.Crossref | GoogleScholarGoogle Scholar | 26704638PubMed |

Chien, Y., Cheng, W. C., Wu, M. R., Jiang, S. T., Shen, C. K., and Chung, B. C. (2013). Misregulated progesterone secretion and impaired pregnancy in Cyp11a1 transgenic mice. Biol. Reprod. 89, 91.
Misregulated progesterone secretion and impaired pregnancy in Cyp11a1 transgenic mice.Crossref | GoogleScholarGoogle Scholar | 23966322PubMed |

Conway, B. A., Mahesh, V. B., and Mills, T. M. (1990). Effect of dihydrotestosterone on the growth and function of ovarian follicles in intact immature female rats primed with PMSG. J. Reprod. Fertil. 90, 267–277.
Effect of dihydrotestosterone on the growth and function of ovarian follicles in intact immature female rats primed with PMSG.Crossref | GoogleScholarGoogle Scholar | 2121972PubMed |

Dethlefsen, C., Hojfeldt, G., and Hojman, P. (2013). The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res. Treat. 138, 657–664.
The role of intratumoral and systemic IL-6 in breast cancer.Crossref | GoogleScholarGoogle Scholar | 23532539PubMed |

Edson, M. A., Nagaraja, A. K., and Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712.
The mammalian ovary from genesis to revelation.Crossref | GoogleScholarGoogle Scholar | 19776209PubMed |

Fortini, M. E. (2009). Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16, 633–647.
Notch signaling: the core pathway and its posttranslational regulation.Crossref | GoogleScholarGoogle Scholar | 19460341PubMed |

Fraser, H. M., Hastings, J. M., Allan, D., Morris, K. D., Rudge, J. S., and Wiegand, S. J. (2012). Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology 153, 1972–1983.
Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary.Crossref | GoogleScholarGoogle Scholar | 22334711PubMed |

Gadó, K., Domján, G., Hegyesi, H., and Falus, A. (2000). Role of interleukin-6 in the pathogenesis of multiple myeloma. Cell Biol. Int. 24, 195–209.
Role of interleukin-6 in the pathogenesis of multiple myeloma.Crossref | GoogleScholarGoogle Scholar | 10816321PubMed |

Gaiano, N., and Fishell, G. (2002). The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471–490.
The role of notch in promoting glial and neural stem cell fates.Crossref | GoogleScholarGoogle Scholar | 12052917PubMed |

Gao, F., Zhang, J., Wang, X., Yang, J., Chen, D., Huff, V., and Liu, Y. X. (2014). Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum. Mol. Genet. 23, 333–341.
Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation.Crossref | GoogleScholarGoogle Scholar | 24009315PubMed |

García-Pascual, C. M., Zimmermann, R. C., Ferrero, H., Shawber, C. J., Kitajewski, J., Simon, C., Pellicer, A., and Gómez, R. (2013). Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells. Fertil. Steril. 100, 1768–1776.e1.
Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells.Crossref | GoogleScholarGoogle Scholar | 24074756PubMed |

George, R. M., Hahn, K. L., Rawls, A., Viger, R. S., and Wilson-Rawls, J. (2015). Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction 150, 383–394.
Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis.Crossref | GoogleScholarGoogle Scholar | 26183893PubMed |

Gorospe, W. C., Hughes, F. M., and Spangelo, B. L. (1992). Interleukin-6: effects on and production by rat granulosa cells in vitro. Endocrinology 130, 1750–1752.
| 1537322PubMed |

Grego–Bessa, J., Luna–Zurita, L., del Monte, G., Bolós, V., Melgar, P., Arandilla, A., Garratt, A. N., Zang, H., Mukouyama, Y. S., Chen, H., Shou, W., Ballestar, E., Esteller, M., Rojas, A., Pérez-Pomares, J. M., and de la Pompa, J. L. (2007). Notch signaling is essential for ventricular chamber development. Dev. Cell 12, 415–429.
Notch signaling is essential for ventricular chamber development.Crossref | GoogleScholarGoogle Scholar | 17336907PubMed |

Guthrie, H. D., Pursel, V. G., Bolt, D. J., and Cooper, B. S. (1993). Expression of a bovine growth hormone transgene inhibits pregnant mare’s serum gonadotropin-induced follicle maturation in prepubertal gilts. J. Anim. Sci. 71, 3409–3413.
Expression of a bovine growth hormone transgene inhibits pregnant mare’s serum gonadotropin-induced follicle maturation in prepubertal gilts.Crossref | GoogleScholarGoogle Scholar | 8294295PubMed |

Hanukoglu, I. (1992). Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 43, 779–804.
Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis.Crossref | GoogleScholarGoogle Scholar | 22217824PubMed |

Heikinheimo, M., Ermolaeva, M., Bielinska, M., Rahman, N. A., Narita, N., Huhtaniemi, I. T., Tapanainen, J. S., and Wilson, D. B. (1997). Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary. Endocrinology 138, 3505–3514.
Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 9231805PubMed |

Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., Kageyama, R., and Ivashkiv, L. B. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-γ pathways. Immunity 29, 691–703.
Integrated regulation of Toll-like receptor responses by Notch and interferon-γ pathways.Crossref | GoogleScholarGoogle Scholar | 18976936PubMed |

Ito, M., Yu, R. N., and Jameson, J. L. (1998). Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol. Endocrinol. 12, 290–301.
Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1.Crossref | GoogleScholarGoogle Scholar | 9482669PubMed |

Jefcoate, C. R., McNamara, B. C., Artemenko, I., and Yamazaki, T. (1992). Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis. J. Steroid Biochem. Mol. Biol. 43, 751–767.
Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis.Crossref | GoogleScholarGoogle Scholar | 22217822PubMed |

Jiao, Z., Wang, W., Ma, J., Wang, S., Su, Z., and Xu, H. (2012). Notch signaling mediates TNF-α-induced IL-6 production in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Clin. Dev. Immunol. 2012, 350209.
Notch signaling mediates TNF-α-induced IL-6 production in cultured fibroblast-like synoviocytes from rheumatoid arthritis.Crossref | GoogleScholarGoogle Scholar | 22649468PubMed |

Jing, J., Jiang, X., Chen, J., Yao, X., Zhao, M., Li, P., Pan, Y., Ren, Y., Liu, W., and Lyu, L. (2017). Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. Anim. Reprod. Sci. 181, 69–78.
Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells.Crossref | GoogleScholarGoogle Scholar | 28400072PubMed |

Johnson, J., Espinoza, T., McGaughey, R. W., Rawls, A., and Wilson–Rawls, J. (2001). Notch pathway genes are expressed in mammalian ovarian follicles. Mech. Dev. 109, 355–361.
Notch pathway genes are expressed in mammalian ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 11731249PubMed |

Keck, C., Rajabi, Z., Pfeifer, K., Bettendorf, H., Brandstetter, T., and Breckwoldt, M. (1998). Expression of interleukin-6 and interleukin-6 receptors in human granulosa lutein cells. Mol. Hum. Reprod. 4, 1071–1076.
Expression of interleukin-6 and interleukin-6 receptors in human granulosa lutein cells.Crossref | GoogleScholarGoogle Scholar | 9835360PubMed |

Kim, S., Pyun, J. A., Cha, D. H., Ko, J. J., and Kwack, K. (2011). Epistasis between FSHR and CYP19A1 polymorphisms is associated with premature ovarian failure. Fertil. Steril. 95, 2585–2588.
Epistasis between FSHR and CYP19A1 polymorphisms is associated with premature ovarian failure.Crossref | GoogleScholarGoogle Scholar | 21269619PubMed |

King, S. R., and LaVoie, H. A. (2012). Gonadal transactivation of STARD1, CYP11A1 and HSD3B. Front. Biosci. 17, 824–846.
Gonadal transactivation of STARD1, CYP11A1 and HSD3B.Crossref | GoogleScholarGoogle Scholar |

Kishimoto, T. (2005). Interleukin-6: from basic science to medicine – 40 years in immunology. Annu. Rev. Immunol. 23, 1–21.
Interleukin-6: from basic science to medicine – 40 years in immunology.Crossref | GoogleScholarGoogle Scholar | 15771564PubMed |

Kopan, R., and Ilagan, M. X. (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233.
The canonical Notch signaling pathway: unfolding the activation mechanism.Crossref | GoogleScholarGoogle Scholar | 19379690PubMed |

Kovall, R. A., Gebelein, B., Sprinzak, D., and Kopan, R. (2017). The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev. Cell 41, 228–241.
The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force.Crossref | GoogleScholarGoogle Scholar | 28486129PubMed |

Krop, I., Demuth, T., Guthrie, T., Wen, P. Y., Mason, W. P., Chinnaiyan, P., Butowski, N., Groves, M. D., Kesari, S., Freedman, S. J., Blackman, S., Watters, J., Loboda, A., Podtelezhnikov, A., Lunceford, J., Chen, C., Giannotti, M., Hing, J., Beckman, R., and Lorusso, P. (2012). Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J. Clin. Oncol. 30, 2307–2313.
Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors.Crossref | GoogleScholarGoogle Scholar | 22547604PubMed |

Kundakovic, M., Chen, Y., Guidotti, A., and Grayson, D. R. (2009). The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol. Pharmacol. 75, 342–354.
The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes.Crossref | GoogleScholarGoogle Scholar | 19029285PubMed |

Labrie, F., Simard, J., Luu-The, V., Bélanger, A., and Pelletier, G. (1992). Structure, function and tissue-specific gene expression of 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidogenic tissues. J. Steroid Biochem. Mol. Biol. 43, 805–826.
Structure, function and tissue-specific gene expression of 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidogenic tissues.Crossref | GoogleScholarGoogle Scholar | 22217825PubMed |

Lai, E. C. (2004). Notch signaling: control of cell communication and cell fate. Development 131, 965–973.
Notch signaling: control of cell communication and cell fate.Crossref | GoogleScholarGoogle Scholar | 14973298PubMed |

Laitinen, M. P., Anttonen, M., Ketola, I., Wilson, D. B., Ritvos, O., Butzow, R., and Heikinheimo, M. (2000). Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. J. Clin. Endocrinol. Metab. 85, 3476–3483.
| 10999851PubMed |

LaVoie, H. A. (2003). The role of GATA in mammalian reproduction. Exp. Biol. Med. (Maywood) 228, 1282–1290.
The role of GATA in mammalian reproduction.Crossref | GoogleScholarGoogle Scholar | 14681544PubMed |

Maeda, A., Inoue, N., Matsuda–Minehata, F., Goto, Y., Cheng, Y., and Manabe, N. (2007). The role of interleukin-6 in the regulation of granulosa cell apoptosis during follicular atresia in pig ovaries. J. Reprod. Dev. 53, 481–490.
The role of interleukin-6 in the regulation of granulosa cell apoptosis during follicular atresia in pig ovaries.Crossref | GoogleScholarGoogle Scholar | 17272928PubMed |

Martín-Millán, M., and Castañeda, S. (2013). Estrogens, osteoarthritis and inflammation. Joint Bone Spine 80, 368–373.
Estrogens, osteoarthritis and inflammation.Crossref | GoogleScholarGoogle Scholar | 23352515PubMed |

McIlmoil, S., Strickland, J., and Judd, A. M. (2016). Interleukin 6 increases the in vitro expression of key proteins associated with steroidogenesis in the bovine adrenal zona fasciculata. Domest. Anim. Endocrinol. 55, 11–24.
Interleukin 6 increases the in vitro expression of key proteins associated with steroidogenesis in the bovine adrenal zona fasciculata.Crossref | GoogleScholarGoogle Scholar | 26700094PubMed |

Meidan, R., Girsh, E., Blum, O., and Aberdam, E. (1990). In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Biol. Reprod. 43, 913–921.
In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics.Crossref | GoogleScholarGoogle Scholar | 2291928PubMed |

Mukumoto, S., Mori, K., and Ishikawa, H. (1995). Efficient induction of superovulation in adult rats by PMSG and hCG. Exp. Anim. 44, 111–118.
Efficient induction of superovulation in adult rats by PMSG and hCG.Crossref | GoogleScholarGoogle Scholar | 7601219PubMed |

Murta, D., Batista, M., Silva, E., Trindade, A., Mateus, L., Duarte, A., and Lopes-da-Costa, L. (2015). Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle. Reprod. Fertil. Dev. 27, 1038–1048.
Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 24695060PubMed |

Murtaugh, L. C., Stanger, B. Z., Kwan, K. M., and Melton, D. A. (2003). Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl Acad. Sci. USA 100, 14920–14925.
Notch signaling controls multiple steps of pancreatic differentiation.Crossref | GoogleScholarGoogle Scholar | 14657333PubMed |

Omichinski, J. G., Trainor, C., Evans, T., Gronenborn, A. M., Clore, G. M., and Felsenfeld, G. (1993). A small single-‘finger’ peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex. Proc. Natl Acad. Sci. USA 90, 1676–1680.
A small single-‘finger’ peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex.Crossref | GoogleScholarGoogle Scholar | 8446581PubMed |

Ozisik, G., Achermann, J. C., Meeks, J. J., and Jameson, J. L. (2003). SF1 in the development of the adrenal gland and gonads. Horm. Res. 59, 94–98.
| 12566727PubMed |

Palaga, T., Wongchana, W., and Kueanjinda, P. (2018). Notch signaling in macrophages in the context of cancer immunity. Front. Immunol. 9, 652.
Notch signaling in macrophages in the context of cancer immunity.Crossref | GoogleScholarGoogle Scholar | 29686671PubMed |

Pangas, S. A., Choi, Y., Ballow, D. J., Zhao, Y., Westphal, H., Matzuk, M. M., and Rajkovic, A. (2006). Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc. Natl Acad. Sci. USA 103, 8090–8095.
Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8.Crossref | GoogleScholarGoogle Scholar | 16690745PubMed |

Patel, B., Elguero, S., Thakore, S., Dahoud, W., Bedaiwy, M., and Mesiano, S. (2015). Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Update 21, 155–173.
Role of nuclear progesterone receptor isoforms in uterine pathophysiology.Crossref | GoogleScholarGoogle Scholar | 25406186PubMed |

Peng, J., Tang, M., Zhang, B. P., Zhang, P., Zhong, T., Zong, T., Yang, B., and Kuang, H. B. (2013). Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. Fertil. Steril. 99, 1436–1443.e1.
Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells.Crossref | GoogleScholarGoogle Scholar | 23312234PubMed |

Prasasya, R. D., and Mayo, K. E. (2018). Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells. Endocrinology 159, 184–198.
Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 29126263PubMed |

Qiu, X. X., Chen, L., Wang, C. H., Lin, Z. X., Chen, B. J., You, N., Chen, Y., and Wang, X. F. (2016). The vascular notch ligands delta-like ligand 4 (dll4) and jagged1 (jag1) have opposing correlations with microvascularization but a uniform prognostic effect in primary glioblastoma: a preliminary study. World Neurosurg. 88, 447–458.
The vascular notch ligands delta-like ligand 4 (dll4) and jagged1 (jag1) have opposing correlations with microvascularization but a uniform prognostic effect in primary glioblastoma: a preliminary study.Crossref | GoogleScholarGoogle Scholar | 26546995PubMed |

Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013). Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308.
Genome engineering using the CRISPR–Cas9 system.Crossref | GoogleScholarGoogle Scholar | 24157548PubMed |

Rose-John, S., Waetzig, G. H., Scheller, J., Grotzinger, J., and Seegert, D. (2007). The IL–6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin. Ther. Targets 11, 613–624.
The IL–6/sIL-6R complex as a novel target for therapeutic approaches.Crossref | GoogleScholarGoogle Scholar | 17465721PubMed |

Rutz, S., Mordmuller, B., Sakano, S., and Scheffold, A. (2005). Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. Eur. J. Immunol. 35, 2443–2451.
Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells.Crossref | GoogleScholarGoogle Scholar | 16047342PubMed |

Sander, G. R., and Powell, B. C. (2004). Expression of notch receptors and ligands in the adult gut. J. Histochem. Cytochem. 52, 509–516.
Expression of notch receptors and ligands in the adult gut.Crossref | GoogleScholarGoogle Scholar | 15034002PubMed |

Sawiński, P., and Lukaszyk, A. (2002). The influence of interleukin-1 and interleukin-6 on expression of proteins involved in steroidogenesis in Leydig cells and on their apoptosis or necrosis in vitro. Folia Histochem. Cytobiol. 40, 159–160.
| 12056624PubMed |

Shih, I. M., and Wang, T. L. (2007). Notch signaling, γ-secretase inhibitors, and cancer therapy. Cancer Res. 67, 1879–1882.
Notch signaling, γ-secretase inhibitors, and cancer therapy.Crossref | GoogleScholarGoogle Scholar |

Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham–Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., Michael, M. D., and Mendelson, C. R. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev. 15, 342–355.
| 8076586PubMed |

Spangelo, B. L., Judd, A. M., Call, G. B., Zumwalt, J., and Gorospe, W. C. (1995). Role of the cytokines in the hypothalamic–pituitary–adrenal and gonadal axes. Neuroimmunomodulation 2, 299–312.
Role of the cytokines in the hypothalamic–pituitary–adrenal and gonadal axes.Crossref | GoogleScholarGoogle Scholar | 8739203PubMed |

Strickland, J., McIlmoil, S., Williams, B. J., Seager, D. C., Porter, J. P., and Judd, A. M. (2017). Interleukin-6 increases the expression of key proteins associated with steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 119, 1–17.
Interleukin-6 increases the expression of key proteins associated with steroidogenesis in human NCI-H295R adrenocortical cells.Crossref | GoogleScholarGoogle Scholar | 28063793PubMed |

Sugino, N. (2014). Molecular mechanisms of luteinization. Obstet. Gynecol. Sci. 57, 93–101.
Molecular mechanisms of luteinization.Crossref | GoogleScholarGoogle Scholar | 24678481PubMed |

Suzumori, N., Yan, C., Matzuk, M. M., and Rajkovic, A. (2002). Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech. Dev. 111, 137–141.
Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes.Crossref | GoogleScholarGoogle Scholar | 11804785PubMed |

Tackey, E., Lipsky, P. E., and Illei, G. G. (2004). Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 13, 339–343.
Rationale for interleukin-6 blockade in systemic lupus erythematosus.Crossref | GoogleScholarGoogle Scholar | 15230289PubMed |

Takayama, K., Sasano, H., Fukaya, T., Morohashi, K., Suzuki, T., Tamura, M., Costa, M. J., and Yajima, A. (1995). Immunohistochemical localization of Ad4-binding protein with correlation to steroidogenic enzyme expression in cycling human ovaries and sex cord stromal tumors. J. Clin. Endocrinol. Metab. 80, 2815–2821.
| 7673429PubMed |

Tamura, K., Kawaguchi, T., Hara, T., Takatoshi, S., Tohei, A., Miyajima, A., Seishi, T., and Kogo, H. (2000). Interleukin-6 decreases estrogen production and messenger ribonucleic acid expression encoding aromatase during in vitro cytodifferentiation of rat granulosa cell. Mol. Cell. Endocrinol. 170, 103–111.
Interleukin-6 decreases estrogen production and messenger ribonucleic acid expression encoding aromatase during in vitro cytodifferentiation of rat granulosa cell.Crossref | GoogleScholarGoogle Scholar | 11162894PubMed |

Taraborrelli, S. (2015). Physiology, production and action of progesterone. Acta Obstet. Gynecol. Scand. 94, 8–16.
Physiology, production and action of progesterone.Crossref | GoogleScholarGoogle Scholar | 26358238PubMed |

Vanorny, D. A., and Mayo, K. E. (2017). The role of Notch signaling in the mammalian ovary. Reproduction 153, R187–R204.
The role of Notch signaling in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 28283672PubMed |

Vanorny, D. A., Prasasya, R. D., Chalpe, A. J., Kilen, S. M., and Mayo, K. E. (2014). Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Mol. Endocrinol. 28, 499–511.
Notch signaling regulates ovarian follicle formation and coordinates follicular growth.Crossref | GoogleScholarGoogle Scholar | 24552588PubMed |

Viger, R. S., Guittot, S. M., Anttonen, M., Wilson, D. B., and Heikinheimo, M. (2008). Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22, 781–798.
Role of the GATA family of transcription factors in endocrine development, function, and disease.Crossref | GoogleScholarGoogle Scholar | 18174356PubMed |

Vorontchikhina, M. A., Zimmermann, R. C., Shawber, C. J., Tang, H., and Kitajewski, J. (2005). Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation. Gene Expr. Patterns 5, 701–709.
Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation.Crossref | GoogleScholarGoogle Scholar | 15939383PubMed |

Vrtačnik, P., Ostanek, B., Mencej-Bedrač, S., and Marc, J. (2014). The many faces of estrogen signaling. Biochem. Med. (Zagreb) 24, 329–342.
The many faces of estrogen signaling.Crossref | GoogleScholarGoogle Scholar | 25351351PubMed |

Wang, J., Liu, S., Peng, L., Dong, Q., Bao, R., Lv, Q., Tang, M., Hu, C., Li, G., Liang, S., and Zhang, C. (2015). Notch signaling pathway regulates progesterone secretion in murine luteal cells. Reprod. Sci. 22, 1243–1251.
Notch signaling pathway regulates progesterone secretion in murine luteal cells.Crossref | GoogleScholarGoogle Scholar | 25701842PubMed |

Wongchana, W., and Palaga, T. (2012). Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell. Mol. Immunol. 9, 155–162.
Direct regulation of interleukin-6 expression by Notch signaling in macrophages.Crossref | GoogleScholarGoogle Scholar | 21983868PubMed |

Xie, Q., Cheng, Z., Chen, X., Lobe, C. G., and Liu, J. (2017). The role of Notch signalling in ovarian angiogenesis. J. Ovarian Res. 10, 13.
The role of Notch signalling in ovarian angiogenesis.Crossref | GoogleScholarGoogle Scholar | 28284219PubMed |

Yang, H. Y., and Evans, T. (1992). Distinct roles for the two cGATA-1 finger domains. Mol. Cell. Biol. 12, 4562–4570.
Distinct roles for the two cGATA-1 finger domains.Crossref | GoogleScholarGoogle Scholar | 1406646PubMed |

Yang, M., Wang, L., Wang, X., Wang, X., Yang, Z., and Li, J. (2017a). IL-6 promotes FSH-induced VEGF expression through JAK/STAT3 signaling pathway in bovine granulosa cells. Cell. Physiol. Biochem. 44, 293–302.
IL-6 promotes FSH-induced VEGF expression through JAK/STAT3 signaling pathway in bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 29132131PubMed |

Yang, M., Wang, X., Wang, L., Wang, X., Li, J., and Yang, Z. (2017b). IL-1α up-regulates IL-6 expression in bovine granulosa cells via MAPKs and NF-κB signaling pathways. Cell. Physiol. Biochem. 41, 265–273.
IL-1α up-regulates IL-6 expression in bovine granulosa cells via MAPKs and NF-κB signaling pathways.Crossref | GoogleScholarGoogle Scholar | 28214882PubMed |

Zhang, C. P., Yang, J. L., Zhang, J., Li, L., Huang, L., Ji, S. Y., Hu, Z. Y., Gao, F., and Liu, Y. X. (2011). Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology 152, 2437–2447.
Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 21427220PubMed |

Zhou, D., Quach, K. M., Yang, C., Lee, S. Y., Pohajdak, B., and Chen, S. (2000). PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRα1 (estrogen related receptor α-1). Mol. Endocrinol. 14, 986–998.
| 10894149PubMed |