Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology

Carlos Parra-O. A C , Michael J. Bayly A , Andrew Drinnan A , Frank Udovicic B and Pauline Ladiges A D
+ Author Affiliations
- Author Affiliations

A School of Botany, The University of Melbourne, Vic. 3010, Australia.

B Royal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia.

C Instituto de Ciencias Naturales, Universidad Nacional de Colombia, A. A. 7495, Bogotá, Colombia.

D Corresponding author. Email: p.ladiges@unimelb.edu.au

Australian Systematic Botany 22(5) 384-399 https://doi.org/10.1071/SB09028
Submitted: 12 June 2009  Accepted: 2 September 2009   Published: 28 October 2009

Abstract

Phylogenetic relationships of sections and species within Corymbia (Myrtaceae), the bloodwood eucalypts, were evaluated by using combined analyses of nuclear rDNA (ETS + ITS) and morphological characters. Combining morphological characters with molecular data provided resolution of relationships within Corymbia. The analyses supported the monophyly of the genus and recognition of the following two major clades, treated here as new subgenera: subgenus Corymbia, including informal sections recognised by Hill and Johnson (1995), namely Rufaria (red bloodwoods), Apteria and Fundoria; and subgenus Blakella, including sections Politaria (spotted gums), Cadagaria, Blakearia (paper-fruited bloodwoods or ghost gums) and Ochraria (yellow bloodwoods). Hill and Johnson’s section Rufaria is monophyletic if Apteria and Fundoria are included. It is evident that, among the red bloodwoods, series are not monophyletic and several morphological characters result from convergent evolution. There was strong morphological and molecular evidence that the three species of red bloodwoods that occur in south-western Western Australia (series Gummiferae: C. calophylla and C. haematoxylon, and series Ficifoliae: C. ficifolia) form a monophyletic group, separate from the eastern C. gummifera (series Gummiferae), which is probably sister to the clade of all other red bloodwoods. Phylogenetic results supported recognition of new taxonomic categories within Corymbia, and these are formalised here.


Acknowledgements

We thank Ken Hill, Peter Wilson and staff of the Mt Annan Botanic Gardens and Dean Nicolle, Currency Creek Arboretum, for access to collections and assistance. Eve Lucas and Peter de Lange provided advice on ETS primers for use in Myrtaceae. Carlos Parra-O. is grateful to The University of Melbourne for an International Postgraduate Scholarship, to the Albert Shimmin Memorial Fund of the Faculty of Sciences of The University of Melbourne, and to the Universidad Nacional de Colombia for its continuous support. This work was funded by an Australian Research Council (ARC) Linkage grant, including financial support from the Maud Gibson Trust, RBG Melbourne and RBG Sydney.


References


Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10, 449–463.
CrossRef | CAS | PubMed | open url image1

Bayly MJ, Ladiges PY (2007) Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae). Molecular Phylogenetics and Evolution 44, 346–356.
CrossRef | CAS | PubMed | open url image1

Bayly MJ, Udovicic F, Gibbs AK, Parra-O. C, Ladiges PY (2008) Ribosomal DNA pseudogenes are widespread in eucalypts (Myrtaceae): implications for phylogenetic analysis. Cladistics 24, 131–146.
CrossRef | open url image1

Berry PE, Hahn WJ, Sytsma KJ, Hall JC, Mast A (2004) Phylogenetic relationships and biogeography of Fuchsia (Onagraceae) based on noncoding nuclear and chloroplast DNA data. American Journal of Botany 91, 601–614.
CrossRef | CAS | open url image1

Berry PE, Hipp AL, Wurdack KJ, Van Ee B, Riina R (2005) Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and trnLtrnF DNA sequence data. American Journal of Botany 92, 1520–1534.
CrossRef | CAS | open url image1

Boland DJ, Sedgley M (1986) Stigma and style morphology in relation to taxonomy and breeding system in Eucalyptus and Angophora (Myrtaceae). Australian Journal of Botany 34, 569–584.
CrossRef | open url image1

Brooker MIH (2000) A new classification of genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13, 79–148.
CrossRef | open url image1

Brooker MIH, Bean AR (1991) A revision of the yellow bloodwoods (Myrtaceae: Eucalyptus series Naviculares Maiden). Austrobaileya 3, 409–437. open url image1

Brooker MIH , Kleinig DA (1999) ‘Field guide to eucalypts. Vol. 1.’ 2nd edn. (Bloomings Books: Melbourne)

Brooker MIH , Kleinig DA (2001) ‘Field guide to eucalypts. Vol. 2.’ 2nd edn. (Bloomings Books: Melbourne)

Brooker MIH , Kleinig DA (2004) ‘Field guide to eucalypts. Vol. 3.’ 2nd edn. (Bloomings Books: Melbourne)

Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145, 821–832.
CAS | PubMed |
open url image1

Catalán P, Kellogg EA, Olmstead RG (1997) Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Molecular Phylogenetics and Evolution 8, 150–166.
CrossRef | PubMed | open url image1

Chippendale GM (1988) ‘Flora of Australia. Vol. 19. Myrtaceae, Eucalyptus, Angophora.’ (Australian Government Publishing Service: Canberra)

Drinnan AN, Ladiges PY (1988) Perianth development in Angophora and the bloodwood eucalypts (Myrtaceae). Plant Systematics and Evolution 160, 219–239.
CrossRef | open url image1

Drinnan AN, Ladiges PY (1989) Operculum development in the Eudesmieae B eucalypts and Eucalyptus caesia (Myrtaceae). Plant Systematics and Evolution 165, 227–237.
CrossRef | open url image1

Drinnan AN, Ladiges PY (1991) Floral development and systematic position of Eucalyptus curtisii. Australian Systematic Botany 4, 539–552.
CrossRef | open url image1

Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10, 315–319.
CrossRef | open url image1

Hill KD, Johnson LAS (1995) Systematic studies in the eucalypts 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6, 185–504. open url image1

Käss E, Wink M (1997) Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS 1 + 2 regions of rDNA. Plant Systematics and Evolution 208, 139–167.
CrossRef | open url image1

Ladiges PY (1984) A comparative study of trichomes in Angophora Cav. and Eucalyptus L’Hérit – a question of homology. Australian Journal of Botany 32, 561–574.
CrossRef | open url image1

Ladiges PY, Humphries CJ (1983) A cladistic study of Arillastrum, Angophora and Eucalyptus (Myrtaceae). Botanical Journal of the Linnean Society 87, 105–134.
CrossRef | open url image1

Ladiges PY, Udovicic F (2000) Comment on a new classification of the eucalypts. Australian Systematic Botany 13, 149–152.
CrossRef | open url image1

Martins L, Hellwig FH (2005) Systematic position of the genera Serrulata and Klasea within Centaureinae (Cardueae, Asteraceae) inferred from ETS and ITS sequence data and new combinations in Klasea. Taxon 54, 632–638. open url image1

McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (2006) International Code of Botanical Nomenclature (Vienna Code) adopted by the seventeenth international botanical congress Vienna, Austria, July 2005. Regnum Vegetabile 146, 1–568. open url image1

Nicolle D (2003) ‘Currency Creek Arboretum (CCA) eucalypt research. Vol. 2.’ (D Nicolle: Adelaide)

Ochieng JW, Steane DA, Ladiges PY, Baverstock PR, Henry RJ, Shepherd M (2007a) Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genetics and Molecular Biology 30, 1125–1134.
CrossRef | CAS | open url image1

Ochieng JW, Henry RJ, Baverstock PR, Steane DA, Shepherd M (2007b) Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44, 752–764.
CrossRef | CAS | PubMed | open url image1

Parra-O. C, Bayly MJ, Udovicic F, Ladiges PY (2006) ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae). Taxon 55, 653–663. open url image1

Pryor LD , Johnson LAS (1971) ‘A classification of the eucalypts.’ (Australian National University Press: Canberra)

Rambaut A (2002) ‘Se-Al: sequence alignment editor.’ Available at: http://tree.bio.ed.ac.uk/

Steane DA, Nicolle D, McKinnon GE, Vaillancourt RE, Potts BM (1999) ITS-sequence data resolve higher-level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
CrossRef | CAS | PubMed | open url image1

Steane DA, Nicolle D, McKinnon GE, Vaillancourt RE, Potts BM (2002) Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany 15, 49–62.
CrossRef | open url image1

Swofford DL (2000) ‘PAUP* 4.0: phylogenetic analysis using parsimony (*and other methods).’ (Sinauer Associates: Sunderland, MA)

Udovicic F, Ladiges PY (2000) Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae). Kew Bulletin 55, 633–645.
CrossRef | open url image1

White TJ , Bruns T , Lee S , Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds MA Innis, DH Gelfand, JJ Sninsky, TJ White) pp. 315–322. (Academic Press: San Diego, CA)

Whittock SP, Steane DA, Vaillancourt RE, Potts BM (2003) Molecular evidence shows that the tropical boxes (Eucalyptus subgenus Minutifructus) are over-ranked. Transactions of the Royal Society of South Australia 127, 27–32. open url image1

Wilson PG, O’Brien MM, Gadek PA, Quinn CJ (2001) Myrtaceae revisited: a reassessment of infrafamilial groups. American Journal of Botany 88, 2013–2025.
CrossRef | open url image1

Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
CrossRef | open url image1

Wright SD, Yong CG, Wichman SR, Dawson JW, Gardner RC (2001) Stepping stones to Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS + ETS). Journal of Biogeography 28, 769–774.
CrossRef | open url image1










Appendix 1.  Sources of plant material and DNA sequences
Voucher specimens for all new sequences are held in the herbarium of The University of Melbourne (MELU). Abbreviations: AND, Andrew N. Drinnan; CCA, Currency Creek Arboretum (with numbers in brackets indicating row and plant numbers respectively of trees in the arboretum; Nicolle 2003); MABG, Mt Annan Botanic Garden; FU, Frank Udovicic; NSW, New South Wales; NT, Northern Territory; P, Parra-O. et al. (2006); PYL, Pauline Y. Ladiges; Qld, Queensland; S, Steane et al. (2002); U, Udovicic and Ladiges (2000); Vic., Victoria; WA, Western Australia. Authorities for species names are in Chippendale (1988; Angophora), Hill and Johnson (1995; Corymbia), and Brooker (2000; Eucalyptus)
Click to zoom



Export Citation Cited By (23)

View Altmetrics