Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Infiltration and structural changes as influenced by initial moisture content

N Collis-George and R Lal

Australian Journal of Soil Research 9(2) 107 - 116
Published: 1971

Abstract

The variation of infiltration behaviour, in columns of aggregates of a structurally stable and an unstable soil, caused by pre-equilibrating the aggregates with a range of relative humidities from 0 to 98%, was measured in terms of advance of the front, cumulative infiltration, slaking, and swelling. In this range, the effect of initial moisture condition on the stable soil (krasnozem) was slight compared with that on the unstable soil (black earth); the wetter the soil initially, the greater was the infiltration rate, and the smaller the slaking and swelling. The change in the behaviour of infiltration into systems of stable aggregates is reflected as (1) an increase in the importance of the sorptivity, and (2) a reduction in the importance of the hydraulic conductivity contribution to the steady-state infiltration process. (The aggregates of 1/2-1 mm are of such a size that the sorptivity contribution should not normally be detectable in stable soils.) It is suggested that in the unstable soil, the heat of wetting is associated with aggregate collapse. The degraded structure of the surface layers prevents fast entry of water into the lower layers. The collapse of structure dominates the infiltration process so that the analysis in terms of sorptivity carried out for stable aggregates cannot be made. The effect of entrapped air on slaking of aggregates of these soils is shown to be negligible compared with the effect of initial moisture content. The application of the results to flood irrigation of unstable soils under field conditions is briefly considered.

https://doi.org/10.1071/SR9710107

© CSIRO 1971

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (14) Get Permission

View Dimensions