Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Acute temperature quotient responses of fishes reflect their divergent thermal habitats in the Banda Sea, Sulawesi, Indonesia

John Eme A C and Wayne A. Bennett B

A Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA.

B Department of Biology, 11000 University Parkway, University of West Florida, Pensacola, FL 32514-5750, USA.

C Corresponding author. Email: jeme@uci.edu

Australian Journal of Zoology 57(5) 357-362 http://dx.doi.org/10.1071/ZO09081
Submitted: 6 August 2009  Accepted: 16 November 2009   Published: 8 December 2009

Abstract

We measured metabolic rates of six Indo-Pacific fishes from different thermal habitats at 26°C and after acute transfer to 32°C. Temperature–metabolism relationships were expressed as temperature quotients (Q10) and ranged from ~1.0 in tidepool-dwelling common (Bathygobius fuscus) and sandflat (Bathygobius sp.) gobies to 2.65 and 2.29 in reef-associated white-tailed humbug (Dascyllus aruanus) and nine-banded cardinalfish (Apogon novemfasciatus), respectively. Squaretail mullet (Liza vaigiensis) and blackspot sergeant (Abudefduf sordidus) displayed Q10 responses of 2.03 and 1.26, respectively. Bathygobiids and blackspot sergeant inhabit mangrove tidepools during daytime low tides and experience temperature fluctuations approximately twice (12°C) the maximum experienced by inhabitants of patch reef or seagrass and squaretail mullet (1–6°C), a mangrove transient that avoids shallow, insolated daytime low tides. The low Q10 responses of the bathygobiids and blackspot sergeant suggest that their metabolic rates are relatively temperature-insensitive over the thermal range tested. Our data support the hypothesis that fish metabolic responses are tailored to specific thermal habitat conditions.


References

Beitinger T. L. Bennett W. A. McCauley R. W. 2000 Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58 237 275 doi:10.1023/A:1007676325825

Brett J. R. 1971 Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). American Zoologist 11 99 113

Bridges C. R. 1988 Respiratory adaptations in intertidal fish. American Zoologist 28 79 96

Brown L. R. 1989 Temperature preferences and oxygen consumption of three species of sculpin (Cottus) from the Pit River drainage, California. Environmental Biology of Fishes 26 223 236 doi:10.1007/BF00004818

Bullock T. H. 1955 Compensation for temperature in the metabolism and activity of poikilotherms. Biological Reviews of the Cambridge Philosophical Society 30 311 342 doi:10.1111/j.1469-185X.1955.tb01211.x

Cech J. J. (1990). Respirometry. In ‘Methods for Fish Biology’. (Eds C. B. Schreck and P. B. Moyle.) pp. 335–356. (American Fisheries Society: Bethesda, MD.)

Clarke A. Johnston N. M. 1999 Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of Animal Ecology 68 893 905 doi:10.1046/j.1365-2656.1999.00337.x

Cox G. W. (1990). Measurement of dissolved oxygen. In ‘Laboratory Manual of General Ecology, Sixth Edition’. (Ed. W. C. Brown.) pp. 212–215. (Wm. C. Brown Publishers: Dubuque, IA.)

Eme J. Bennett W. A. 2009 Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. Journal of Thermal Biology 34 220 225 doi:10.1016/j.jtherbio.2009.02.005

Feder M. E. Hofmann G. E. 1999 Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology 61 243 282 doi:10.1146/annurev.physiol.61.1.243

Fry F. E. J. (1967). Responses of vertebrate poikilotherms to temperature. In ‘Thermobiology’. (Ed. A. H. Rose.) pp. 375–406. (Academic Press: London, UK.)

Fry F. E. J. Brett J. R. Clawson G. H. 1942 Lethal limits of temperature for young goldfish. Revue Canadienne de Biologie 1 50 56

Gibson R. N. (1999). Movement and homing in intertidal fishes. In ‘Intertidal Fishes, Life in Two Worlds’. (Eds M. H. Horn, K. L. M. Martin and M. A. Chotkowski.) pp. 97–125. (Academic Press: San Diego, CA.)

Gordon M. S. Ng W. W. Yip A. Y. 1978 Aspects of the physiology of terrestrial life in amphibious fishes. The Journal of Experimental Biology 72 57 75

Hiatt R. W. Strasburg D. W. 1960 Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecological Monographs 30 65 127 doi:10.2307/1942181

Kim W. S. Kim J. M. Yi S. K. Huh H. T. 1997 Endogenous circadian rhythm in the river puffer fish Takifugu obscurus. Marine Ecology Progress Series 153 293 298 doi:10.3354/meps153293

Miklos P. Katzman S. M. Cech J. J. 2003 Effect of temperature on oxygen consumption of the leopard shark, Triakis semifasciata. Environmental Biology of Fishes 66 15 18 doi:10.1023/A:1023287123495

Mora C. Ospina A. F. 2001 Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Marine Biology 139 765 769

Morris R. W. 1961 Distribution and temperature sensitivity of some eastern pacific cottid fishes. Physiological Zoology 34 217 227

Myers R. F. (1991). ‘Micronesian Reef Fishes.’ (Coral Graphics: Barrigada, Guam.)

Newell R. C. Northcroft H. R. 1967 A reinterpretation of the effect of temperature on the metabolism of certain marine invertebrates. Journal of Zoology 151 277 298

Precht H. (1958). Concepts of the temperature adaptation of unchanging reaction systems of cold-blooded animals. In ‘Physiological Adaptation’. (Ed. C. L. Prosser.) pp. 50–79. (American Physiological Society: Washington, DC.)

Rajaguru S. 2002 Critical thermal maximum of seven estuarine fishes. Journal of Thermal Biology 27 125 128 doi:10.1016/S0306-4565(01)00026-2

Randall H. A. Allen G. R. 1977 A revision of the damselfish genus Dascyllus (Pomacentridae) with description of a new species. Records of the Australian Museum 31 349 385

Schmidt-Nielsen K. (1997). ‘Animal Physiology.’ (Cambridge University Press: New York, NY.)

Scholander P. F. Flagg W. Walters V. Irving L. 1953 Climactic adaptation in artic and tropical poikilotherms. Physiological Zoology 26 67 92

Schwassmann H. O. (1971). Biological rhythms. In ‘Fish Physiology, Volume 6’. (Eds S. Hoar and D. J. Randall.) pp. 371–428. (Academic Press: New York, NY.)

Smith W. L. Craig M. T. 2007 Casting the percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of serranid and percid fishes. Copeia 2007 35 55 doi:10.1643/0045-8511(2007)7[35:CTPNWT]2.0.CO;2

Somero G. N. 1969 Enzymic mechanisms of temperature compensation: Immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. American Naturalist 103 517 530 doi:10.1086/282618

Taylor J. Cook M. Kirkpatrick A. Galleher S. Eme J. Bennett W. A. 2005 Thermal tactics of air-breathing and non air-breathing gobiids inhabiting mangrove tidepools on Pulau Hoga, Indonesia. Copeia 2005 885 892 doi:10.1643/0045-8511(2005)005[0885:TTOAAN]2.0.CO;2

Thacker C. E. 2009 Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia 2009 93 104 doi:10.1643/CI-08-004

Vondracek B. Cech J. J. Longanecker D. 1982 Effect of cycling and constant temperatures on the respiratory metabolism of the Tahoe Sucker, Catostomus tahoensis (Pisces: Catostomidae). Comparative Biochemistry and Physiology 73A 11 14

Yoon S. J. Kim C. K. Myoung J. G. Kim W. S. 2003 Comparison of oxygen consumption patterns between wild and cultured black rockfish Sebastes schlegeli. Fisheries Science 69 43 49 doi:10.1046/j.1444-2906.2003.00586.x



Rent Article Export Citation Cited By (5)