Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE (Open Access)

Trajectories of ecology past and future

Mark Westoby https://orcid.org/0000-0001-7690-4530 A § *
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia.

* Correspondence to: mark.westoby@mq.edu.au

§ This contribution by Professor Mark Westoby is the first in a new journal category - Reflections. These are invited reviews authored by a leader in a research field on a topic of their choosing that relates to the development of Botanical Science. The reviews will reflect historically on our science and participating scientists, providing context for the current state of a discipline.

Handling Editor: John Morgan

Australian Journal of Botany 73, BT25008 https://doi.org/10.1071/BT25008
Submitted: 11 February 2025  Accepted: 28 July 2025  Published: 12 August 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Ecosystems have many different processes going on. Researchers need to select and simplify, and so development of ecology as a discipline has involved finding different possible ways to select and simplify. The history is summarised via six strands: zonation of vegetation physiognomy, single-species population dynamics, population interactions, ecosystems as machines through which energy cascades and nutrients cycle, episodic events and landscape mosaics, and generalisation across species. Australia has been influential in several of these strands. So then, where might ecology head in future? Future ecosystems are likely to be different from the past, partly owing to climate change, but also because of technologies such as cell culture milk and meat, new synbio organisms, and agricultural and land-management robotics. The most important framing for the future will be first-principle rules for how ecosystems are constructed. First-principle questions include the following: (1) what are the resources; where do energy and mineral nutrients come from; and linked to that (2) what is the disturbance regime and how does succession between disturbances work; (3) how does competition for resources get worked out; (4) what physical structure is contributed by habitat-forming species; and how is this influenced by competition, disturbance regime and predation on habitat-forming species? The six historical strands discussed continue to be important for addressing these questions. Ecology is seen by many students and citizens as aligned with conservation, as a Cassandra-science mainly concerned with what might go wrong in ecosystems. By framing ecology curriculum as a science of ecosystem construction, we can look more to the future and to new possibilities.

Keywords: competition and competitive exclusion, ecology curriculum, ecosystem structure, foundation species, history of ecology, population dynamics, succession, trait-based ecology, vegetation physiognomy.

References

Alrumaih H, Sabin M, Impagliazzo J (2018) An overview of the new ACM/IEEE information technology curricular framework. In ‘2018 IEEE World Engineering Education Conference (EDUNINE)’, March 2018. pp. 1–6. (IEEE)

Andrewartha HG, Birch C (1954) ‘The distribution and abundance of animals.’ (University of Chicago Press)

Beadle NCW (1954) Soil phosphate and the delimitation of plant communities in eastern Australia. Ecology 35, 370-375.
| Crossref | Google Scholar |

Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47, 992-1007.
| Crossref | Google Scholar |

Begon M, Townsend CR, Harper JL (1986) ‘Ecology: individuals, populations and communities.’ 1st edn. (Oxford University Press: Oxford, UK)

Belda I, Williams TC, de Celis M, Paulsen IT, Pretorius IS (2021) Seeding the idea of encapsulating a representative synthetic metagenome in a single yeast cell. Nature Communications 12(1), 1599.
| Crossref | Google Scholar |

Bergstrom DM, Wienecke BC, van den Hoff J, Hughes L, Lindenmayer DB, Ainsworth TD, Baker CM, Bland L, Bowman DMJS, Brooks ST, Canadell JG, Constable AJ, Dafforn KA, Depledge MH, Dickson CR, Duke NC, Helmstedt KJ, Holz A, Johnson CR, McGeoch MA, Melbourne-Thomas J, Morgain R, Nicholson E, Prober SM, Raymond B, Ritchie EG, Robinson SA, Ruthrof KX, Setterfield SA, Sgrò CM, Stark JS, Travers T, Trebilco R, Ward DFL, Wardle GM, Williams KJ, Zylstra PJ, Shaw JD (2021) Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology 27(9), 1692-1703.
| Crossref | Google Scholar | PubMed |

Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist 165(2), 525-538.
| Crossref | Google Scholar | PubMed |

Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20(1), 1-9.
| Crossref | Google Scholar |

Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014) Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution 5(1), 65-73.
| Crossref | Google Scholar |

Brown JH (2014) Why are there so many species in the tropics? Journal of Biogeography 41(1), 8-22.
| Crossref | Google Scholar | PubMed |

Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytrý M, Field R, Jansen F, Kattge J, Pillar VD, Schrodt F, Mahecha MD, Peet RK, Sandel B, van Bodegom P, Altman J, Alvarez-Dávila E, Arfin Khan MAS, Attorre F, Aubin I, Baraloto C, Barroso JG, Bauters M, Bergmeier E, Biurrun I, Bjorkman AD, Blonder B, Čarni A, Cayuela L, Černý T, Cornelissen JHC, Craven D, Dainese M, Derroire G, Sanctis MD, Díaz S, Doležal J, Farfan-Rios W, Feldpausch TR, Fenton NJ, Garnier E, Guerin GR, Gutiérrez AG, Haider S, Hattab T, Henry G, Hérault B, Higuchi P, Hölzel N, Homeier J, Jentsch A, Jürgens N, Kącki Z, Karger DN, Kessler M, Kleyer M, Knollová I, Korolyuk AY, Kühn I, Laughlin DC, Lens F, Loos J, Louault F, Lyubenova MI, Malhi Y, Marcenò C, Mencuccini M, Müller JV, Munzinger J, Myers-Smith IH, Neill DA, Niinemets Ü, Orwin KH, Ozinga WA, Penuelas J, Pérez-Haase A, Petřík P, Phillips OL, Pärtel M, Reich PB, Römermann C, Rodrigues AV, Sabatini FM, Sardans J, Schmidt M, Seidler G, Silva Espejo JE, Silveira M, Smyth A, Sporbert M, Svenning J-C, Tang Z, Thomas R, Tsiripidis I, Vassilev K, Violle C, Virtanen R, Weiher E, Welk E, Wesche K, Winter M, Wirth C, Jandt U (2018) Global trait–environment relationships of plant communities. Nature Ecology & Evolution 2, 1906-1917.
| Crossref | Google Scholar | PubMed |

Cai L, Kreft H, Denelle P, Taylor A, Craven D, Dawson W, Essl F, van Kleunen M, Pergl J, Pyšek P, Winter M, Cabezas FJ, Wagner V, Pelser PB, Wieringa JJ, Weigelt P (2025a) Environmental filtering, not dispersal history, explains global patterns of phylogenetic turnover in seed plants at deep evolutionary timescales. Nature Ecology & Evolution 9(2), 314-324.
| Crossref | Google Scholar |

Cai W, Zhu Z, Harrison SP, Ryu Y, Wang H, Zhou B, Prentice IC (2025b) A unifying principle for global greenness patterns and trends. Communications Earth & Environment 6(1), 1-11.
| Crossref | Google Scholar |

Canadell JG, Jackson RB (Eds) (2021) ‘Ecosystem collapse and climate change.’ (Springer Nature Switzerland AG: Cham, Switzerland)

Carpenter S, Walker B, Anderies JM, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4(8), 765-781.
| Crossref | Google Scholar |

Chesson P (1994) Multispecies competition in variable environments. Theoretical Population Biology 45(3), 227-276.
| Crossref | Google Scholar |

Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426), 752-755.
| Crossref | Google Scholar | PubMed |

Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus Stellatus. Ecology 42(4), 710-723.
| Crossref | Google Scholar |

Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335), 1302-1310.
| Crossref | Google Scholar | PubMed |

Connell JH (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. The American Naturalist 122, 661-696.
| Crossref | Google Scholar |

Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111, 1119-1144.
| Crossref | Google Scholar |

Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11(10), 1065-1071.
| Crossref | Google Scholar | PubMed |

Cowan IR (1982) Regulation of water use in relation to carbon gain in higher plants. In ‘Physiological plant ecology II. Encyclopedia of plant physiology. Vol 12 / B’. (Eds OL Lange, PS Nobel, CB Osmond, H Ziegler) pp. 589–613. (Springer)

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature 529(7585), 167-171.
| Crossref | Google Scholar | PubMed |

Divíšek J, Chytrý M, Beckage B, Gotelli NJ, Lososová Z, Pyšek P, Richardson DM, Molofsky J (2018) Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature Communications 9(1), 4631.
| Crossref | Google Scholar |

Dormann CF, Mello MAR (2023) Why we need a canonical ecology curriculum. Basic and Applied Ecology 71, 98-109.
| Crossref | Google Scholar |

Elith J (2017) Predicting distributions of invasive species. In ‘Invasive species: risk assessment and management’. (Eds AP Robinson, MA Burgman, M Nunn, T Walshe) pp. 93–129. (Cambridge University Press: Cambridge)

Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution 1(4), 330-342.
| Crossref | Google Scholar |

Elton CS (1927) ‘Animal ecology.’ (Sidgwick and Jackson: London, UK).

Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1), 78-90.
| Crossref | Google Scholar | PubMed |

Ferrer-Paris JR, Keith DA (2022) Fire ecology traits for plants: a database for fire research and management. Available at http://13.54.3.205/index

Filbee-Dexter K, Scheibling RE (2014) Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Marine Ecology Progress Series 495, 1-25.
| Crossref | Google Scholar |

Filbee-Dexter K, Wernberg T (2018) Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 68(2), 64-76.
| Crossref | Google Scholar |

Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M, Wang H, Mäkelä A, Rebel KT, Meron E, Schymanski SJ, Rovenskaya E, Stocker BD, Zaehle S, Manzoni S, van Oijen M, Wright IJ, Ciais P, van Bodegom PM, Peñuelas J, Hofhansl F, Terrer C, Soudzilovskaia NA, Midgley G, Prentice IC (2020) Organizing principles for vegetation dynamics. Nature Plants 6(5), 444-453.
| Crossref | Google Scholar | PubMed |

Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends in Ecology & Evolution 23(12), 695-703.
| Crossref | Google Scholar | PubMed |

Gause GF (1934) ‘The struggle for existence.’ (Williams and Wilkins: Baltimore, USA)

Grime JP (1974) Vegetation classification by reference to strategies. Nature 250, 26-31.
| Crossref | Google Scholar |

Grime JP (1979) ‘Plant strategies and vegetation processes.’ (Wiley: Chichester, UK)

Grime JP, Hunt R (1975) Relative growth-rate: its range and adaptive significance in a local flora. The Journal of Ecology 63, 393-422.
| Crossref | Google Scholar |

Grime JP, Hodgson JG, Hunt R (1988) ‘Comparative plant ecology.’ (Unwin-Hyman: London, UK)

Guimarães PR (2020) The structure of ecological networks across levels of organization. Annual Review of Ecology, Evolution, and Systematics 51, 433-460.
| Crossref | Google Scholar |

Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. The American Naturalist 94(879), 421-425.
| Crossref | Google Scholar |

Hantson S, Arneth A, Harrison SP, Kelley DI, Prentice IC, Rabin SS, Archibald S, Mouillot F, Arnold SR, Artaxo P, Bachelet D, Ciais P, Forrest M, Friedlingstein P, Hickler T, Kaplan JO, Kloster S, Knorr W, Lasslop G, Li F, Mangeon S, Melton JR, Meyn A, Sitch S, Spessa A, van der Werf GR, Voulgarakis A, Yue C (2016) The status and challenge of global fire modelling. Biogeosciences 13(11), 3359-3375.
| Crossref | Google Scholar |

Hantson S, Kelley DI, Arneth A, Harrison SP, Archibald S, Bachelet D, Forrest M, Hickler T, Lasslop G, Li F, Mangeon S, Melton JR, Nieradzik L, Rabin SS, Prentice IC, Sheehan T, Sitch S, Teckentrup L, Voulgarakis A, Yue C (2020) Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development 13(7), 3299-3318.
| Crossref | Google Scholar |

Harper JL (1967) A Darwinian approach to plant ecology. Journal of Ecology 55(2), 247-270.
| Crossref | Google Scholar |

Harper JL (1977) ‘Population biology of plants.’ (Academic Press: London, UK)

Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brännström Å, de Boer H, Dieckmann U, Joshi J, Keenan TF, Lavergne A, Manzoni S, Mengoli G, Morfopoulos C, Peñuelas J, Pietsch S, Rebel KT, Ryu Y, Smith NG, Stocker BD, Wright IJ (2021) Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytologist 231(6), 2125-2141.
| Crossref | Google Scholar | PubMed |

Haverd V, Smith B, Nieradzik L, Briggs PR, Woodgate W, Trudinger CM, Canadell JG, Cuntz M (2018) A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geoscientific Model Development 11(7), 2995-3026.
| Crossref | Google Scholar |

Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10, 693-709.
| Crossref | Google Scholar |

Henry GHR, Hollister RD, Klanderud K, Björk RG, Bjorkman AD, Elphinstone C, Jónsdóttir IS, Molau U, Petraglia A, Oberbauer SF, Rixen C, Wookey PA (2022) The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arctic Science 8(3), 550-571.
| Crossref | Google Scholar |

HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43(1), 227-248.
| Crossref | Google Scholar |

Hubbell SP (2001) ‘The unified neutral theory of biodiversity and biogeography.’ (Princeton University Press)

Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist 93(870), 145-159.
| Crossref | Google Scholar |

IPCC (2023) Climate change 2023: Synthesis report. A Report of the Intergovernmental Panel on Climate Change. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. IPCC.

Jackson WD (1968) Fire, air, water and earth – an elemental ecology of Tasmania. Proceedings of the Ecological Society of Australia 3, 9-16.
| Google Scholar |

Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. The American Naturalist 111, 691-713.
| Crossref | Google Scholar |

Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS, III, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, POSCHLOD P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana J-F, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY – a global database of plant traits. Global Change Biology 17(9), 2905-2935.
| Crossref | Google Scholar |

Keith DA, Ferrer-Paris JR, Nicholson E, Bishop MJ, Polidoro BA, Ramirez-Llodra E, Tozer MG, Nel JL, Mac Nally R, Gregr EJ, Watermeyer KE, Essl F, Faber-Langendoen D, Franklin J, Lehmann CER, Etter A, Roux DJ, Stark JS, Rowland JA, Brummitt NA, Fernandez-Arcaya UC, Suthers IM, Wiser SK, Donohue I, Jackson LJ, Pennington RT, Iliffe TM, Gerovasileiou V, Giller P, Robson BJ, Pettorelli N, Andrade A, Lindgaard A, Tahvanainen T, Terauds A, Chadwick MA, Murray NJ, Moat J, Pliscoff P, Zager I, Kingsford RT (2022) A function-based typology for Earth’s ecosystems. Nature 610(7932), 513-518.
| Crossref | Google Scholar | PubMed |

Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an amazonian forest. Science 322(5901), 580-582.
| Crossref | Google Scholar | PubMed |

Krebs CJ (1972) ‘Ecology. The experimental analysis of distribution and abundance.’ 1st edn. (Harper & Row: New York, NY, USA)

Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun I-F, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature 529(7585), 204-207.
| Crossref | Google Scholar | PubMed |

Laughlin DC (2023) ‘Plant strategies: the demographic consequences of functional traits in changing environments.’ (Oxford University Press: Oxford, UK)

Lawton JH, McNeill S (1979) Between the devil and the deep blue sea: on the problem of being an herbivore. Symposium of the British Ecological Society 20, 223-244.
| Google Scholar |

Lindeman RL (1942) The trophic – dynamic aspect of ecology. Ecology 23(4), 399-417.
| Crossref | Google Scholar |

Lipson H, Sukkarieh S (2023) Robots may transform the way we produce and prepare food. Nature Reviews Bioengineering 1(11), 795-798.
| Crossref | Google Scholar |

Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) ‘Biogeography.’ (Sinauer Associates)

Lord J, Westoby M, Leishman M (1995) Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. The American Naturalist 146(3), 349-364.
| Crossref | Google Scholar |

Lotka AJ (1925) ‘Elements of physical biology.’ (Williams and Wilkins)

Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Annals of Botany 25, 168-184.
| Crossref | Google Scholar |

MacArthur RH (1965) Patterns of species diversity. Biological Reviews 40, 510-533.
| Crossref | Google Scholar |

Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101(921), 377-385.
| Crossref | Google Scholar |

Martín Belda D, Anthoni P, Wårlind D, Olin S, Schurgers G, Tang J, Smith B, Arneth A (2022) LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism. Geoscientific Model Development 15(17), 6709-6745.
| Crossref | Google Scholar |

May RM (1973) ‘Stability and complexity in model ecosystems.’ (Princeton University Press: Princeton, NJ, USA)

Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005) A brief history of seed size. Science 307(5709), 576-580.
| Crossref | Google Scholar | PubMed |

Moles AT, Ackerly DD, Tweddle JC, Dickie JB, Smith R, Leishman MR, Mayfield MM, Pitman A, Wood JT, Westoby M (2007) Global patterns in seed size. Global Ecology and Biogeography 16(1), 109-116.
| Crossref | Google Scholar |

Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. Journal of Ecology 97(5), 923-932.
| Crossref | Google Scholar |

Nicholson AJ (1933) Supplement: the balance of animal populations. Journal of Animal Ecology 2(1), 131-178.
| Crossref | Google Scholar |

Nicholson AJ (1954) An outline of the dynamics of animal populations. Australian Journal of Zoology 2(1), 9-65.
| Crossref | Google Scholar |

Nix HA (1986) A biogeographic analysis of Australian elapid snakes. In ‘Atlas of elapid snakes of Australia’. Australian Flora and Fauna Series. (Ed. R Longmore) pp. 4–15. (Bureau of Flora and Fauna: Canberra, ACT, Australia)

Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5-21.
| Crossref | Google Scholar |

Odum EP (1953) ‘Fundamentals of ecology.’ 1st edn. (W.B. Saunders: Philadelphia, VA, USA)

Paine ER, Boyd PW, Strzepek RF, Ellwood M, Brewer EA, Diaz-Pulido G, Schmid M, Hurd CL (2023) Iron limitation of kelp growth may prevent ocean afforestation. Communications Biology 6(1), 607.
| Crossref | Google Scholar |

Paquette A, Hargreaves AL (2021) Biotic interactions are more often important at species’ warm versus cool range edges. Ecology Letters 24(11), 2427-2438.
| Crossref | Google Scholar | PubMed |

Parsons S, Raikova S, Chuck CJ (2020) The viability and desirability of replacing palm oil. Nature Sustainability 3(6), 412-418.
| Crossref | Google Scholar |

Phillips BL, Shine R (2004) Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proceedings of the National Academy of Sciences 101(49), 17150-17155.
| Crossref | Google Scholar |

Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439(7078), 803.
| Crossref | Google Scholar | PubMed |

Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. The American Naturalist 100, 33-46.
| Crossref | Google Scholar |

Pianka ER (1978) ‘Evolutionary ecology.’ 2nd edn. (Harper & Row: New York, NY, USA)

Pimentel D (1968) Population regulation and genetic feedback. Science 159(3822), 1432-1437.
| Crossref | Google Scholar | PubMed |

Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In ‘Quantitative methods for conservation biology’. (Eds S Ferson, M Burgman) pp. 291–306. (Springer: New York, NY, USA)

Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) Special Paper: a global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19, 117-134.
| Crossref | Google Scholar |

Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecology Letters 17(1), 82-91.
| Crossref | Google Scholar | PubMed |

Raunkiaer C (1934) ‘The life forms of plants and statistical plant geography.’ (English translation; Clarendon Press: London, UK)

Reinert M (2024) How science is helping farmers to find a balance between agriculture and solar farms. Nature Spotlight France.
| Crossref | Google Scholar |

Ricklefs RE (1973) ‘Ecology.’ (Chiron Press)

Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461, 472-475.
| Crossref | Google Scholar | PubMed |

Roxburgh SH, Wood SW, Mackey BG, Woldendorp G, Gibbons P (2006) Assessing the carbon sequestration potential of managed forests: a case study from temperate Australia. Journal of Applied Ecology 43(6), 1149-1159.
| Crossref | Google Scholar |

Sabatini FM, Lenoir J, Hattab T, Arnst EA, Chytrý M, Dengler J, De Ruffray P, Hennekens SM, Jandt U, Jansen F, Jiménez-Alfaro B, Kattge J, Levesley A, Pillar VD, Purschke O, Sandel B, Sultana F, Aavik T, Aćić S, Acosta ATR, Agrillo E, Alvarez M, Apostolova I, Arfin Khan MAS, Arroyo L, Attorre F, Aubin I, Banerjee A, Bauters M, Bergeron Y, Bergmeier E, Biurrun I, Bjorkman AD, Bonari G, Bondareva V, Brunet J, Čarni A, Casella L, Cayuela L, Černý T, Chepinoga V, Csiky J, Ćušterevska R, De Bie E, de Gasper AL, De Sanctis M, Dimopoulos P, Dolezal J, Dziuba T, El-Sheikh MAE-RM, Enquist B, Ewald J, Fazayeli F, Field R, Finckh M, Gachet S, Galán-de-Mera A, Garbolino E, Gholizadeh H, Giorgis M, Golub V, Alsos IG, Grytnes J-A, Guerin GR, Gutiérrez AG, Haider S, Hatim MZ, Hérault B, Hinojos Mendoza G, Hölzel N, Homeier J, Hubau W, Indreica A, Janssen JAM, Jedrzejek B, Jentsch A, Jürgens N, Kącki Z, Kapfer J, Karger DN, Kavgacı A, Kearsley E, Kessler M, Khanina L, Killeen T, Korolyuk A, Kreft H, Kühl HS, Kuzemko A, Landucci F, Lengyel A, Lens F, Lingner DV, Liu H, Lysenko T, Mahecha MD, Marcenò C, Martynenko V, Moeslund JE, Monteagudo Mendoza A, Mucina L, Müller JV, Munzinger J, Naqinezhad A, Noroozi J, Nowak A, Onyshchenko V, Overbeck GE, Pärtel M, Pauchard A, Peet RK, Peñuelas J, Pérez-Haase A, Peterka T, Petřík P, Peyre G, Phillips OL, Prokhorov V, Rašomavičius V, Revermann R, Rivas-Torres G, Rodwell JS, Ruprecht E, Rūsiņa S, Samimi C, Schmidt M, Schrodt F, Shan H, Shirokikh P, Šibík J, Šilc U, Sklenář P, Škvorc Ž, Sparrow B, Sperandii MG, Stančić Z, Svenning J-C, Tang Z, Tang CQ, Tsiripidis I, Vanselow KA, Vásquez Martínez R, Vassilev K, Vélez-Martin E, Venanzoni R, Vibrans AC, Violle C, Virtanen R, von Wehrden H, Wagner V, Walker DA, Waller DM, Wang H-F, Wesche K, Whitfeld TJS, Willner W, Wiser SK, Wohlgemuth T, Yamalov S, Zobel M, Bruelheide H (2021) sPlotOpen – An environmentally balanced, open-access, global dataset of vegetation plots. Global Ecology and Biogeography 30(9), 1740-1764.
| Crossref | Google Scholar |

Saintilan N, Horton B, Törnqvist TE, Ashe EL, Khan NS, Schuerch M, Perry C, Kopp RE, Garner GG, Murray N, Rogers K, Albert S, Kelleway J, Shaw TA, Woodroffe CD, Lovelock CE, Goddard MM, Hutley LB, Kovalenko K, Feher L, Guntenspergen G (2023) Widespread retreat of coastal habitat is likely at warming levels above 1.5°C. Nature 621(7977), 112-119.
| Crossref | Google Scholar | PubMed |

Sale PF (1974) Overlap in resource use, and interspecific competition. Oecologia 17(3), 245-256.
| Crossref | Google Scholar | PubMed |

Sale PF (1978) Coexistence of coral reef fishes – a lottery for living space. Environmental Biology of Fishes 3(1), 85-102.
| Crossref | Google Scholar |

Schimper AFW (1898) ‘Pflanzengeographie auf Physiologischer Grundlage.’ (G. Fischer: Jena, Germany) [In German]

Schoener TW (1983) Field experiments on interspecific competition. The American Naturalist 122, 240-285.
| Crossref | Google Scholar |

Smith DMS, Morton SR (1990) A framework for the ecology of arid Australia. Journal of Arid Environments 18, 255-278.
| Crossref | Google Scholar |

Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography 10(6), 621-637.
| Crossref | Google Scholar |

Smith B, Wårlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S (2014) Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11(7), 2027-2054.
| Crossref | Google Scholar |

Soley-Guardia M, Alvarado-Serrano DF, Anderson RP (2024) Top ten hazards to avoid when modeling species distributions: a didactic guide of assumptions, problems, and recommendations. Ecography 2024(4), e06852.
| Crossref | Google Scholar |

Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32(3), 369-373.
| Crossref | Google Scholar |

Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria della Reale Accademia Nazionale dei Lincei 2, 31-113 [In Italian].
| Google Scholar |

von Humboldt A, Bonpland A (1807) ‘Essai sur la Geographie des Plantes.’ (Librairie Lebrault Schoell: Paris, France) [In French]

Walker RSK, Pretorius IS (2022) Synthetic biology for the engineering of complex wine yeast communities. Nature Food 3(4), 249-254.
| Crossref | Google Scholar | PubMed |

Walker BH, Salt DA (2006) ‘Resilience thinking: sustaining ecosystems and people in a changing world.’ (Island Press)

Walker B, Westoby M (2011) States and transitions: the trajectory of an idea, 1970–2010. Israel Journal of Ecology and Evolution 57, 17-22.
| Crossref | Google Scholar |

Warming E (1909) ‘Oecology of plants: an introduction to the study of plant communities.’ (Clarendon Press: Oxford)

Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science 10(5), 609-620.
| Crossref | Google Scholar |

Wernberg T (2021) Marine heatwave drives collapse of kelp forests in Western Australia. In ‘Ecosystem collapse and climate change’. Ecological Studies. (Eds JG Canadell, RB Jackson) pp. 325–343. (Springer International Publishing: Cham, Switzerland)

Westoby M (1997) What does ‘ecology’ mean? Trends in Ecology & Evolution 12(4), 166.
| Crossref | Google Scholar |

Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199, 213-227.
| Crossref | Google Scholar |

Westoby M (2022) Field experiments on mechanisms influencing species boundary movement under climate change. Plant and Soil 476(1), 527-534.
| Crossref | Google Scholar |

Westoby M (2025) Trait-based ecology, trait-free ecology, and in between. New Phytologist 245(1), 33-39.
| Crossref | Google Scholar | PubMed |

Westoby M, Walker B, Noy-Meir I (1989) Opportunistic management for rangelands not at equilibrium. Journal of Range Management 42, 266-274.
| Crossref | Google Scholar |

Westoby M, Gillings MR, Madin JS, Nielsen DA, Paulsen IT, Tetu SG (2021) Trait dimensions in bacteria and archaea compared to vascular plants. Ecology Letters 24, 1487-1504.
| Crossref | Google Scholar | PubMed |

Wood GV, Filbee-Dexter K, Coleman MA, Valckenaere J, Aguirre JD, Bentley PM, Carnell P, Dawkins PD, Dykman LN, Earp HS, Ennis LB, Francis P, Franco JN, Hayford H, Lamb JB, Ling SD, Layton C, Lis E, Masters B, Miller N, Moore PJ, Neufeld C, Pocklington JB, Smale D, Stahl F, Starko S, Steel SC, Verbeek J, Vergés A, Wilding CM, Wernberg T (2024) Upscaling marine forest restoration: challenges, solutions and recommendations from the Green Gravel Action Group. Frontiers in Marine Science 11, 1364263.
| Crossref | Google Scholar |

Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochemical Cycles 9(4), 471-490.
| Crossref | Google Scholar |

Wright IJ, Reich PB, Westoby M (2003) Least-cost input mixtures of water and nitrogen for photosynthesis. The American Naturalist 161(1), 98-111.
| Crossref | Google Scholar | PubMed |

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428(6985), 821-827.
| Crossref | Google Scholar | PubMed |

Yoda K, Kira T, Ogawa H, Hozumi H (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. Journal of the Institute of Polytechnics, Osaka City University, Series D 14, 107-129.
| Google Scholar |

Zaehle S (2019) Dynamic global vegetation models. In ‘Plant ecology’. (Eds E-D Schulze, E Beck, N Buchmann, S Clemens, K Müller-Hohenstein, M Scherer-Lorenzen) pp. 843–863. (Springer: Berlin,  Germany)

Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada K-i, Parr CL, Adair EC, Adu-Bredu S, Alam MA, Alvarez-Garzón C, Apgaua D, Aragón R, Ardon M, Arndt SK, Ashton LA, Barber NA, Beauchêne J, Berg MP, Beringer J, Boer MM, Bonet JA, Bunney K, Burkhardt TJ, Carvalho D, Castillo-Figueroa D, Cernusak LA, Cheesman AW, Cirne-Silva TM, Cleverly JR, Cornelissen JHC, Curran TJ, D’Angioli AM, Dallstream C, Eisenhauer N, Evouna Ondo F, Fajardo A, Fernandez RD, Ferrer A, Fontes MAL, Galatowitsch ML, González G, Gottschall F, Grace PR, Granda E, Griffiths HM, Guerra Lara M, Hasegawa M, Hefting MM, Hinko-Najera N, Hutley LB, Jones J, Kahl A, Karan M, Keuskamp JA, Lardner T, Liddell M, Macfarlane C, Macinnis-Ng C, Mariano RF, Méndez MS, Meyer WS, Mori AS, Moura AS, Northwood M, Ogaya R, Oliveira RS, Orgiazzi A, Pardo J, Peguero G, Penuelas J, Perez LI, Posada JM, Prada CM, Přívětivý T, Prober SM, Prunier J, Quansah GW, Resco de Dios V, Richter R, Robertson MP, Rocha LF, Rúa MA, Sarmiento C, Silberstein RP, Silva MC, Siqueira FF, Stillwagon MG, Stol J, Taylor MK, Teste FP, Tng DYP, Tucker D, Türke M, Ulyshen MD, Valverde-Barrantes OJ, van den Berg E, van Logtestijn RSP, Veen GF(Ciska), Vogel JG, Wardlaw TJ, Wiehl G, Wirth C, Woods MJ, Zalamea P-C (2022) Termite sensitivity to temperature affects global wood decay rates. Science 377(6613), 1440-1444.
| Crossref | Google Scholar | PubMed |

Zhou B, Cai W, Zhu Z, Wang H, Harrison SP, Prentice IC (2025) A general model for the seasonal to decadal dynamics of leaf area. Global Change Biology 31(3), e70125.
| Crossref | Google Scholar |