Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Surface Modification of Multiwalled Carbon Nanotubes with Engineered Self-Assembled RAFT Diblock Coatings

Yue Liu A B , Xiaojuan Hao B D , Lynne J. Waddington C , Jieshan Qiu A D and Timothy C. Hughes B D
+ Author Affiliations
- Author Affiliations

A Carbon Research Laboratory, State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116000, China.

B CSIRO Materials Science and Engineering, Clayton, Vic. 3169, Australia.

C CSIRO Materials Science and Engineering, Parkville, Vic. 3052, Australia.

D Corresponding authors. Email: xiaojuan.hao@csiro.au; jqiu@dlut.edu.cn; tim.hughes@csiro.au




Dr Xiaojuan Hao received her bachelor's and master's degrees from Dalian University of Technology, China, and her Ph.D. in 2001 from the University of New England, Australia. She then worked at the University of Melbourne and the University of New South Wales as a post-doctoral research fellow. She joined the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in 2006 as a research scientist. She is now a senior research scientist and research team leader. Her current research focuses on the design and synthesis of polymers for biomedical applications, including drug delivery and medical imaging, and she is the author of more than 30 publications.



Professor Jieshan Qiu received his M.Sc. degree in 1987 and Ph.D. degree in 1990, both from Dalian University of Technology (DUT) in China. He joined DUT as Assistant Professor of chemical engineering in July 1990, and was promoted to full Professor in 1998. He is now Cheung-Kong Distinguished Professor at the School of Chemical Engineering in DUT and the director of Liaoning Key Lab for Energy Materials and Chemical Engineering and Center for Nano Materials and Science. His research interests include the development of new methodologies for controlled synthesis of nano- and micro-sized carbon materials and porous carbons, and exploration of their applications in catalysis, energy production, and environment protection; clean coal technology; and plasma chemical engineering. He has co-authored one book and three book chapters, published more than 310 papers in peer-reviewed journals, and has 52 patents and invention disclosures in his name. Professor Qiu has also served on the international advisory boards of seven international journals, including Carbon, International Journal of Oil, Gas and Coal Technology, and International Journal of Nano and Biomaterials.



Dr Timothy Hughes is Principal Research Scientist at Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. His research interests include the design and synthesis of polymers for biomedical applications. He obtained his Ph.D. in the area of organic chemistry from Monash University in 1997. He began his career in polymeric biomaterials during his post-doctoral fellowship at CSIRO Molecular Science. He is a co-author on 31 journal publications and co-inventor on 16 patent families. Dr Hughes has received a number of awards, including a Eureka Prize (2004) and the CSIRO Medal for Research Achievement (2012, 2009).

Australian Journal of Chemistry 67(1) 151-158 https://doi.org/10.1071/CH13401
Submitted: 30 July 2013  Accepted: 10 November 2013   Published: 17 December 2013

Abstract

A facile method to modify the surface of multiwalled carbon nanotubes (MWCNTs) via electrostatic interactions between polyelectrolytes and oxidized MWCNTs was developed. Diblock copolymers containing poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC), a positively charged block, and poly(ethylene glycol) methacrylate (PEGMA), a neutral block, with tailored molecular weights and low polydispersities were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. Acid treated-MWCNTs were coated with the RAFT diblock copolymers to improve their dispersibility in aqueous phosphate buffered saline (PBS) solution. The short positively charged PMETAC block was designed to attach the block copolymers to the surface of MWCNTs via electrostatic interactions, whereas the PEGMA block improved dispersibility of the MWCNTs in aqueous solutions. Extensive screening of the diblock copolymers with different degrees of polymerization (DP) showed that the dispersion stability of the polymer-coated MWCNTs in PBS was greatly improved with increasing chain length of the PEGMA block. In particular, the MWCNTs coated with a diblock copolymer containing PEGMA (DP = 118, the longest block investigated) showed superior dispersion stability in both water and PBS solution.


References

[1]  S. Iijima, Nature 1991, 354, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1Ojtg%3D%3D&md5=e5b13c2f6d883d6fdc2ef32a37cf54f4CAS |

[2]  A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 2005, 9, 674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqu7fJ&md5=36337841411a35c6c86ca1b4d7ee62c1CAS | 16233988PubMed |

[3]  H. Wu, G. Liu, Y. Zhuang, D. Wu, H. Zhang, H. Yang, H. Hu, S. Yang, Biomaterials 2011, 32, 4867.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVWltr8%3D&md5=efb413bcf127af2ecb5075e749746930CAS | 21459436PubMed |

[4]  A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Wmurc%3D&md5=0d4812e6d27071d37511116836c67d5cCAS | 8662534PubMed |

[5]  S. K. Smart, A. I. Cassady, G. Q. Lu, D. J. Martin, Carbon 2006, 44, 1034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlejsrs%3D&md5=ae87e505561068362f2f43a3d9f6e07dCAS |

[6]  P.-C. Ma, N. A. Siddiqui, G. Marom, J.-K. Kim, Compos. Part A – Appl. S. 2010, 41, 1345.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  P. Liu, Eur. Polym. J. 2005, 41, 2693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVWms7c%3D&md5=af28088d0e4b16cc954a9b858935e107CAS |

[8]  S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, C. R. Park, Carbon 2012, 50, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ymtrbN&md5=e317d956721cc1c4570cf6f087477d38CAS |

[9]  K. Balasubramanian, M. Burghard, Small 2005, 1, 180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1CksA%3D%3D&md5=1823c6a02dae213214fcba6267cc921bCAS | 17193428PubMed |

[10]  L. Vaisman, H. D. Wagner, G. Marom, Adv. Colloid Interface Sci. 2006, 128–130, 37.
         | Crossref | GoogleScholarGoogle Scholar | 17222381PubMed |

[11]  V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 2008, 46, 833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsF2rsrk%3D&md5=f0b3beef46199766713750074689a642CAS |

[12]  N. G. Sahoo, S. Rana, J. W. Cho, L. Li, S. H. Chan, Prog. Polym. Sci. 2010, 35, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGhtb4%3D&md5=75b95041c64069a32cd956b475c341cdCAS |

[13]  D. Baskaran, J. W. Mays, M. S. Bratcher, Angew. Chem. Int. Ed. 2004, 43, 2138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFSjtro%3D&md5=04d9ed3451f083b99ab7a99a36f52dbcCAS |

[14]  G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, Y. You, Polymer 2006, 47, 5909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1GrsLs%3D&md5=489a15e22d89e8f6ab1dfc0b6c7b8352CAS |

[15]  S. Rahimi-Razin, V. Haddadi-Asl, M. Salami-Kalajahi, F. Behboodi-Sadabad, H. Roghani-Mamaqani, Int. J. Chem. Kinet. 2012, 44, 555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFers70%3D&md5=cf170a072de8d473c8ae20961604a646CAS |

[16]  B. Zhang, J. Wang, Y. Chen, D. Früchtl, B. Yu, X. Zhuang, N. He, W. J. Blau, J. Polym. Sci. Pol. Chem. 2010, 48, 3161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1ajtrg%3D&md5=696c99fdc481c5f135c2439013ca1a66CAS |

[17]  G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, Nanotechnology 2007, 18, 145606.

[18]  M. Bottini, N. Rosato, N. Bottini, Biomacromolecules 2011, 12, 3381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2ktLrJ&md5=65a17ef6297e486f871a9e53a307be3dCAS | 21916410PubMed |

[19]  G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2005, 58, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFymsL4%3D&md5=7b9c6f52f0f3161fbee7ec3f1f332d8bCAS |

[20]  Y. Li, D. Yang, A. Adronov, Y. Gao, X. Luo, H. Li, Macromolecules 2012, 45, 4698.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1WqsLk%3D&md5=a70a93ffa10fee33cf4ce9bbc621e0c1CAS |

[21]  W. Zhong, J. N. Zeuna, J. P. Claverie, J. Polym. Sci. Pol. Chem. 2012, 50, 4403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGmsr7I&md5=4151e7fe34d24d92918bf5cc55e48bedCAS |

[22]  Y. Tomonari, H. Murakami, N. Nakashima, Chem. – Eur. J. 2006, 12, 4027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsV2gs7s%3D&md5=ae322803db4113a223bbd0c01dc1d4f2CAS | 16550613PubMed |

[23]  K. Ding, B. Hu, Y. Xie, G. An, R. Tao, H. Zhang, Z. Liu, J. Mater. Chem. 2009, 19, 3725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCrsL8%3D&md5=c40f5160aad58d440802a6b7caa917bbCAS |

[24]  H. Xie, A. Ortiz-Acevedo, V. Zorbas, R. H. Baughman, R. K. Draper, I. H. Musselman, A. B. Dalton, G. R. Dieckmann, J. Mater. Chem. 2005, 15, 1734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFyrtL4%3D&md5=c6d229d836b6ef23ddad91e60ab3402cCAS |

[25]  A. Satake, Y. Miyajima, Y. Kobuke, Chem. Mater. 2005, 17, 716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVegtw%3D%3D&md5=8111763b0e5ea79ceb6c8064ae143bbeCAS |

[26]  Y.-T. Liu, W. Zhao, Z.-Y. Huang, Y.-F. Gao, X.-M. Xie, X.-H. Wang, X.-Y. Ye, Carbon 2006, 44, 1613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFShsbg%3D&md5=d352edd1a7897bcc9c3923acc98dbce6CAS |

[27]  J. Shen, Y. Hu, C. Qin, M. Ye, Langmuir 2008, 24, 3993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlOisLY%3D&md5=9d4508edc43b649f02b93f7d8c161533CAS | 18341367PubMed |

[28]  M. Ahmed, X. Jiang, Z. Deng, R. Narain, Bioconjugate Chem. 2009, 20, 2017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GgsbzK&md5=c542661ac8815b48670f2847683e59f5CAS |

[29]  Y.-T. Liu, Z.-L. Zhang, W. Zhao, X.-M. Xie, X.-Y. Ye, Carbon 2009, 47, 1883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVGis7k%3D&md5=4874a3fa2283fcbec4220e1c0b07ec66CAS |

[30]  X. Zhao, K. Sui, W. Wu, H. Liang, Y. Li, Z. Wu, Y. Xia, Compos. Part A – Appl. S. 2012, 43, 758.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2jsrs%3D&md5=5f2feebafd1e334b962aaa1eedeb8b7aCAS |

[31]  R. Wang, P. Cherukuri, J. G. Duque, T. K. Leeuw, M. K. Lackey, C. H. Moran, V. C. Moore, J. L. Conyers, R. E. Smalley, H. K. Schmidt, R. B. Weisman, P. S. Engel, Carbon 2007, 45, 2388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyrsLjJ&md5=64184bb294151cf8dccb175602891925CAS |

[32]  C. A. Di, M. Aschi, A. Fontana, Macromolecules 2012, 45, 5185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGlsbc%3D&md5=c44b6af9e50dcb1f97e1f5bdcb38ef7eCAS |

[33]  S.-M. Yuen, C.-C. M. Ma, Y.-Y. Lin, H.-C. Kuan, Compos. Sci. Technol. 2007, 67, 2564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFKqurs%3D&md5=c5c8c4bf0006ed26ac1db60a49a4181cCAS |

[34]  C. S. Chen, X. H. Chen, B. Yi, T. G. Liu, W. H. Li, L. S. Xu, Z. Yang, H. Zhang, Y. G. Wang, Acta Mater. 2006, 54, 5401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyksbbL&md5=fee850c03d5315ba597a1a071e04ec9aCAS |

[35]  C. M. Schilli, M. Zhang, E. Rizzardo, S. H. Thang, Y. K. Chong, K. Edwards, G. Karlsson, A. H. E. Müller, Macromolecules 2004, 37, 7861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns12qs78%3D&md5=20407c88e25ef9fd5850c5a0b4d5b1d0CAS |

[36]  H. Bouhamed, S. Boufi, A. Magnin, J. Colloid Interface Sci. 2007, 312, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVemt74%3D&md5=87b8879d6f73c1590d6deb5ae6b2ca21CAS | 17467726PubMed |

[37]  J. Bernard, X. Hao, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, Biomacromolecules 2006, 7, 232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12rtbzP&md5=73d541331c47cb9aa7b1da0cb5addbb7CAS | 16398520PubMed |

[38]  S. Edmondson, V. L. Osborne, W. T. S. Huck, Chem. Soc. Rev. 2004, 33, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2ksLs%3D&md5=9d650a15d7a58758c2b94cc92b659a33CAS | 14737505PubMed |

[39]  Z. Wei, X. Hao, P. A. Kambouris, Z. Gan, T. C. Hughes, Polymer 2012, 53, 1429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVOju78%3D&md5=e8085596787427d6127960f7e868a87cCAS |

[40]  X. Hao, E. Malmström, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, Aust. J. Chem. 2005, 58, 483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFymsb4%3D&md5=a3e1111c08a1f2ff1f41550ff9c88af1CAS |

[41]  P. Bailon, A. Palleroni, C. A. Schaffer, C. L. Spence, W.-J. Fung, J. E. Porter, G. K. Ehrlich, W. Pan, Z.-X. Xu, M. W. Modi, A. Farid, W. Berthold, M. Graves, Bioconjugate Chem. 2001, 12, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFGlur8%3D&md5=5d5e40aaca8e446a0f572182c2b8de23CAS |

[42]  R. B. Greenwald, Y. H. Choe, J. McGuire, C. D. Conover, Adv. Drug Deliver Rev. 2003, 55, 217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVGiuw%3D%3D&md5=4db963f71347103bdad487b3cab9bec5CAS |

[43]  G. Chen, P. M. Wright, J. Geng, G. Mantovani, D. M. Haddleton, Chem. Commun. 2008, 1097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlWhs7k%3D&md5=81dae6cb8a0530c376a9b804943ba639CAS |

[44]  A. Postma, T. P. Davis, G. Moad, M. S. O’Shea, Macromolecules 2005, 38, 5371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFeru7g%3D&md5=d03403b850d8555d46e41537438d1c04CAS |

[45]  K. R. Reddy, B. C. Sin, C. H. Yoo, D. Sohn, Y. Lee, J. Colloid Interface Sci. 2009, 340, 160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OhurvL&md5=2e9650d0b98645749a5ae072e8f78320CAS | 19800632PubMed |

[46]  C. E. Hall, J. Biophys. Biochem. Cy. 1955, 1, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG2M%2FotlWrsQ%3D%3D&md5=f92a76ba70e3208f00426d14c6cf1f66CAS |

[47]  S. Upadhyayula, T. Quinata, S. Bishop, S. Gupta, N. R. Johnson, B. Bahmani, K. Bozhilov, J. Stubbs, P. Jreij, P. Nallagatla, V. I. Vullev, Langmuir 2012, 28, 5059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOgsrg%3D&md5=1074d046a09e30f376ee77397d1e328eCAS | 22364506PubMed |