Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Fabrication of Ag@AgCl with Enhanced Plasmonic Photocatalysis Performance via a Deep Eutectic Solvent

Jianhua Ge A B , Yuchong Chen A , Jing Xu A , Yujie Liu A , Long Zhang A and Fugeng Zha A
+ Author Affiliations
- Author Affiliations

A School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, Huainan 232001, China.

B Corresponding author. Email: gejianhua13@163.com

Australian Journal of Chemistry 72(3) 200-205 https://doi.org/10.1071/CH18386
Submitted: 5 August 2018  Accepted: 13 November 2018   Published: 6 December 2018

Abstract

The plasmonic photocatalyst Ag@AgCl was successfully prepared through a facile solvothermal method via a deep eutectic solvent (DES), which is composed of choline chloride and urea. X-Ray diffraction, scanning electron microscopy, energy-dispersive X-ray, element-mapping, X-ray photoelectron spectroscopy, N2 absorption–desorption, and UV-vis diffuse reflectance techniques were adopted to analyse the performance of the plasmonic photocatalyst. Characterisation results indicated that the DES not only served as a solvent and Cl source, but also as a reductant. Meanwhile, the probable mechanism for the formation of Ag@AgCl is discussed, which revealed a visible light enhanced photocatalytic property for the degradation of benzidine. Furthermore, the photocatalyst showed no decrease in its catalytic activity even after five cycles of operation. Finally, a possible photocatalytic oxidation mechanism of Ag@AgCl is proposed.


References

[1]  M. M. Momeni, Y. Ghayeb, J. Appl. Electrochem. 2015, 45, 557.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. Yu, X. Yu, Environ. Sci. Technol. 2008, 42, 4902.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. X. Sun, Y. P. Yuan, L. G. Qiu, X. Jiang, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, Dalton Trans. 2012, 41, 6756.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong, A. R. Mohamed, ChemSusChem 2014, 7, 690.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  V. Likodimos, A. Chrysi, M. Calamiotou, C. Fernández-Rodríguez, J. M. Doña-Rodríguez, D. D. Dionysiou, P. Falaras, Appl. Catal. B 2016, 192, 242.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. C. Chitrada, R. Gakhar, D. Chidambaram, E. Aston, K. S. Raja, J. Electrochem. Soc. 2016, 163, H546.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, J. Catal. 2009, 262, 144.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  B. Li, Y. Xie, M. Jing, G. Rong, Y. Tang, G. Zhang, Langmuir 2006, 22, 9380.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  L. Y. Chen, W.-D. Zhang, Appl. Surf. Sci. 2014, 301, 428.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 2017, 8, 1701503.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  P. Zhou, J. G. Yu, M. Jaroniec, Adv. Mater. 2014, 26, 4920.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  C. Zhang, R. Li, Y. Zhao, M. Wang, Aust. J. Chem. 2017, 70, 889.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H. Pan, X. Zhao, Z. Fu, W. Tu, P. Fang, H. Zhang, Appl. Surf. Sci. 2018, 442, 547.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Dong, X. Guo, C. Yang, Z. Ouyang, Appl. Catal. B 2018, 230, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, ACS Catal. 2012, 2, 1677.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  W. Hou, S. B. Cronin, Adv. Funct. Mater. 2013, 23, 1612.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  X. Zhang, Y. Liu, S. T. Lee, S. Yang, Z. Kang, Energy Environ. Sci. 2014, 7, 1409.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  T. Xiong, H. Zhang, Y. Zhang, F. Dong, Chin. J. Catal. 2015, 36, 2155.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. Li, H. Hao, J. Zhou, W. Li, N. Lei, L. Guo, Appl. Surf. Sci. 2017, 422, 626.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. Qi, J. Yu, G. Liu, P. K. Wong, Catal. Today 2014, 224, 193.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. Shen, H. Wei, Z. Pan, Y. Lu, Y. Wang, Appl. Surf. Sci. 2017, 423, 403.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  Z. Song, Y. He, Appl. Surf. Sci. 2017, 420, 911.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 2008, 130, 1676.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  X. Chen, H. Y. Zhu, J. C. Zhao, Z. T. Zheng, X. P. Gao, Angew. Chem. Int. Ed. 2008, 47, 5353.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan, Water Res. 2004, 38, 3001.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.-H. Whangbo, Angew. Chem. Int. Ed. 2008, 47, 7931.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Chem. – Eur. J. 2010, 16, 538.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2007 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[29]  K. Honda, A. Fujishima, Nature 2004, 430, 1012.

[30]  J. X. Xia, Y. P. Ge, J. Di, L. Xu, S. Yin, Z. G. Chen, P. J. Liu, H. M. Li, J. Colloid Interface Sci. 2016, 473, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  H. Xu, H. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, ACS Appl. Mater. Interfaces 2011, 3, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 2014, 114, 11060.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, J. Am. Chem. Soc. 2004, 126, 9142.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 2003, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. Ge, X. Guo, X. Xu, P. Zhang, J. Zhu, J. Wang, RSC Adv. 2015, 5, 49598.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  C. Y. Sheu, S. F. Lee, K. H. Lii, Inorg. Chem. 2006, 45, 1891.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  C. Han, L. Ge, C. Chen, Y. Li, Z. Zhao, X. Xiao, Z. Li, J. Zhang, J. Mater. Chem. A 2014, 2, 12594.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  T. Liu, B. Li, Y. Hao, F. Han, L. Zhang, L. Hu, Appl. Catal. B 2015, 165, 378.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  M. Y. Zhang, C. L. Shao, J. B. Mu, X. M. Huang, Z. Y. Zhang, Z. C. Guo, P. Zhang, Y. C. Liu, J. Mater. Chem. 2012, 22, 577.
         | Crossref | GoogleScholarGoogle Scholar |