Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effect of the Kerogen Molecular Structure on the Formation of Methane During Kerogen Pyrolysis

Qing Wang A B , Xinmin Wang A and Shuo Pan A
+ Author Affiliations
- Author Affiliations

A Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, China.

B Corresponding author. Email: rlx888@126.com

Australian Journal of Chemistry 72(3) 174-183 https://doi.org/10.1071/CH18428
Submitted: 30 August 2018  Accepted: 25 October 2018   Published: 23 November 2018

Abstract

In this study, density functional theory (DFT) at the GGA/RPBE level was employed to examine the effects of the kerogen microstructure on the formation mechanism of methane during the pyrolysis of kerogen. The calculations prove that the evolution of CH4 during kerogen pyrolysis corresponds to demethylation, and the process of forming methane involves the interaction of intramolecular hydrogen atom transfer and assistant hydrogen atom transfer. In all reaction paths, the energy barrier of path 5 is the smallest at 260.56 kJ mol−1. The energy barrier of path 6 is the largest at 554.36 kJ mol−1. The results indicate that CO is favourable for demethylation, and CO2 is not conducive to demethylation. Path 1 is the formation of methane by the transfer of assistant hydrogen atoms, and the required energy barrier is 379.45 kJ mol−1. The side chain structure of the aromatic hydrocarbon structure is liable to demethylation to form methane. A comparison of the reaction energy barriers follows the order: path 1 < path 15 < path 14 < path 10, which indicates the that difference in the demethylation reaction is based on the microstructure. In the same reaction process, the benzene ring and the aliphatic hydrocarbon structure are more susceptible to demethylation to form methane. In the heterocyclic bicyclic structures containing O and S, a comparison of the reaction energy barriers follows the order: path 11 ≈ path 12 < path 13, so paths 11 and 12 are close, but path 13 is more difficult to occur, indicating that it is more difficult to demethylate with heteroatoms in the same ring. From a thermodynamic point of view, in the process of assisting the formation of methane by hydrogen atoms, the demethylation reaction is mainly an endothermic reaction. During the transfer of intramolecular hydrogen atoms, the demethylation reaction is mainly an exothermic reaction, and most reactions are spontaneous.


References

[1]  C. P. Marshall, G. D. Love, C. E. Snape, A. C. Hill, A. C. Allwood, M. R. Walter, M. J. Van Kranendonk, S. A. Bowden, S. P. Sylva, R. E. Summons, Precambrian Res. 2007, 155, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Tao, Y. B. Wang, D. Z. Tang, H. Xu, B. Zhang, W. He, C. Liu, Oil Shale 2012, 29, 115.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  X. T. Zhou, Z. D. Yu, Nat. Resour. Sustain. Dev. 2012, 524–527, 557.

[4]  W. Wang, S. Y. Li, L. Y. Li, Y. Ma, C. T. Yue, J. L. He, Petrol. Sci. 2014, 11, 432.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. Siskin, A. R. Katritzky, in Composition, Geochemistry and Conversion of Oil Shales (Ed. C. Snape) 1995, Vol. 455, pp. 313–327 (Springer: Dordrecht).

[6]  Ü. Lille, Oil Shale 2003, 20, 253.

[7]  Ü. Lille, I. Heinmaa, T. Pehk, Fuel 2003, 82, 799.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  X. Ru, Z. Cheng, L. Song, H. Wang, J. Li, J. Mol. Struct. 2012, 1030, 10.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  X. H. Guan, Y. Liu, D. Wang, Q. Wang, M. S. Chi, S. Liu, C. G. Liu, Energy Fuels 2015, 29, 4122.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  According to the modelling method of Huadian kerogen 2D model (ref. [9]), we have constructed Yaojie kerogen 2D model (C235H243O12N5S2) based on the non-destructive analytical method such as solid state 13C NMR, XRD, XPS, and FTIR analysis, showing that Yaojie kerogen has 44.26 % aromatic carbon and 54.84 % aliphatic carbon. The organic oxygen, nitrogen, and sulfur heteroatoms are associated with carbon atoms as various structural forms; for example, C–O and C–OH (alcohol, phenol, and ether), O=C–O (carboxy), and O=C (carbonyl), pyrrole, amino, ph-C≡N (benzonitrile), sulfoxide, and thiophene.

[11]  According to the modelling method of Huadian kerogen 2D model (ref. [9]), we have constructed Longkou kerogen 2D model (C235H313O36N8S2) based on the non-destructive analytical method such as solid state 13C NMR, XRD, XPS and FTIR analysis, showing that Longkou kerogen has 28.45 % aromatic carbon and 70.33 % aliphatic carbon. The organic oxygen, nitrogen, and sulfur heteroatoms are associated with carbon atoms as various structural forms; for example, C–O and C–OH (alcohol, phenol, and ether), O=C–O (carboxy), and O=C (carbonyl), pyrrole, amino, ph-C≡N(benzonitrile), sulfoxide, and thiophene.

[12]  X. P. Liu, J. H. Zhan, D. g. Lai, G. W. Xu, Energy Fuels 2015, 29, 2987.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. N. Qian, J. H. Zhan, D. G. Lai, M. Y. Li, X. X. Liu, G. W. Xu, Int. J. Hydrogen Energy 2016, 43, 12093.

[14]  Y. H. Sun, F. T. Bai, B. C. Liu, Y. M. Liu, M. Y. Guo, Q. W. Wang, X. S. Lu, F. Yang, Y. Yang, Fuel 2014, 115, 338.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. Tong, X. Han, S. Wang, X. Jiang, Appl. Energy 2011, 25, 4006.

[16]  S. Bhargava, F. Awaja, N. D. Subasinghe, Fuel 2005, 84, 707.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  L. X. Ling, R. G. Zhang, B. J. Wang, K. C. Xie, J. Mol. Struct. THEOCHEM 2009, 905, 8.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  J. B. Huang, C. Liu, S. A. Wei, Acta Chimi. Sin. 2009, 67, 2081.

[19]  J. B. Huang, C. Liu, D. Wu, H. Tong, L. R. Ren, J. Anal. Appl. Pyrolysis 2014, 109, 98.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Liu, J. B. Huang, X. L. Huang, H. J. Li, Z. Zhang, Comput. Theor. Chem. 2011, 964, 207.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  L. N. Zhang, L. X. Ling, S. P. Zhao, R. G. Zhang, B. J. Wang, J. Energy Chem. 2014, 23, 669.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. Wu, J. B. Huang, Mater. Rev. 2015, 6, 158.

[23]  J. B. Huang, C. Liu, S. Wei, X. Huang, H. Li, J. Fuel Chem. Technol. 2011, 39, 590.

[24]  J. B. Huang, C. Liu, S. A. Wei, X. L. Huang, H. J. Li, J. Fuel Chem. Technol. 2011, 39, 590.

[25]  J. R. Bai, W. S. Lin, S. Pan, Q. Wang, CIESC J. 2015, 03, 1104.

[26]  S. Z. Sun, G. Zeng, L. Wei, L. Wei, Z. Q. Zhao, J. Qian, Fuel & Chemical Processes 2011, 42, 1.

[27]  R. J. Evans, D. Wang, F. A. Agblevor, R. J. Evans, H. L. Agblevor, S. D. Baldwin, D. N. Wang, Carbohydr. Res. 1996, 281, 219.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. Delley, J. Chem. Phys. 1990, 92, 508.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Delley, Int. J. Quantum Chem. 1998, 69, 423.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  B. Delley, J. Chem. Phys. 2000, 113, 7756.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  L. Ferrighi, G. K. H. Madsen, B. Hammer, Chem. Phys. Lett. 2010, 492, 183.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  L. Ferrighi, Y. X. Pan, H. Grönbeck, B. Hammer, Phys. Chem. C 2012, 116, 7374.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  R. Nityananda, P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, 864.

[34]  T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett. 1977, 49, 225.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  N. Govind, M. Petersen, G. Fitzgerald, D. K. Smith, J. Andzelm, Comput. Mater. Sci. 2003, 28, 250.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Q. L. Sun, W. Li, H. K. Chen, Q. L. Sun, L. Wen, H. K. Chen, L. B. Qing, J. Fuel Chem. Technol. 2004, 32, 282.

[37]  Y. R. Luo, Handbook of Bond Dissociation Energies 2005 (Science Press: Beijing).