Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

‘Live and Large’: Super-Resolution Optical Fluctuation Imaging (SOFI) and Expansion Microscopy (ExM) of Microtubule Remodelling by Rabies Virus P Protein

Ashley M. Rozario A , Fabian Zwettler B , Sam Duwé C , Riley B. Hargeaves A , Aaron Brice D , Peter Dedecker C , Markus Sauer B , Gregory W. Moseley D , Donna R. Whelan E and Toby D. M. Bell https://orcid.org/0000-0002-4570-5595 A F
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Melbourne, Vic. 3800, Australia.

B Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 10 Am Hubland, 97074 Würzburg, Germany.

C Department of Chemistry, KU Leuven, Celestijnenlaan 200G, Leuven 3001, Belgium.

D Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia.

E La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3552, Australia.

F Corresponding author. Email: toby.bell@monash.edu

Australian Journal of Chemistry 73(8) 686-692 https://doi.org/10.1071/CH19571
Submitted: 3 November 2019  Accepted: 13 January 2020   Published: 27 April 2020

Abstract

The field of super-resolution microscopy continues to progress rapidly, both in terms of evolving techniques and methodologies as well as in the development of new multi-disciplinary applications. Two current drivers of innovation are increasing the possible resolution gain and application in live samples. Super-resolution optical fluctuation imaging (SOFI) is well suited to live samples while expansion microscopy (ExM) enables obtainment of sub-diffraction information via conventional imaging. In this Highlight we provide a brief outline of these methods and report results from application of SOFI and ExM in our on-going study into microtubule remodelling by rabies virus P proteins. We show that MT bundles in live cells transfected with rabies virus P3 protein can be visualised using SOFI in a time-lapse fashion for up to half an hour and can be expanded using current Pro-ExM protocols and imaged using conventional microscopy.


References

[1]  L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, G. P. C. Drummen, Nat. Cell Biol. 2019, 21, 72.
         | Crossref | GoogleScholarGoogle Scholar | 30602772PubMed |

[2]  M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, Biophys. J. 2008, 94, 4957.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, Proc. Natl. Acad. Sci. USA 2000, 97, 8206.
         | Crossref | GoogleScholarGoogle Scholar | 10899992PubMed |

[4]  E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642.
         | Crossref | GoogleScholarGoogle Scholar | 16902090PubMed |

[5]  S. T. Hess, T. P. K. Girirajan, M. D. Mason, Biophys. J. 2006, 91, 4258.
         | Crossref | GoogleScholarGoogle Scholar | 16980368PubMed |

[6]  M. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793.
         | Crossref | GoogleScholarGoogle Scholar | 16896339PubMed |

[7]  A. Sharonov, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 2006, 103, 18911.
         | Crossref | GoogleScholarGoogle Scholar | 17142314PubMed |

[8]  M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, Angew. Chem. Int. Ed. 2008, 47, 6172.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  T. Klein, S. Proppert, M. Sauer, Histochem. Cell Biol. 2014, 141, 561.
         | Crossref | GoogleScholarGoogle Scholar | 24496595PubMed |

[10]  B. M. C. Cloin, E. De Zitter, D. Salas, V. Gielen, G. E. Folkers, M. Mikhaylova, M. Bergeler, B. Krajnik, J. Harvey, C. C. Hoogenraad, L. Van Meervelt, P. Dedecker, L. C. Kapitein, Proc. Natl. Acad. Sci. USA 2017, 114, 7013.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Mikhaylova, B. M. C. Cloin, K. Finan, R. van den Berg, J. Teeuw, M. M. Kijanka, M. Sokolowski, E. A. Katrukha, M. Maidorn, F. Opazo, S. Moutel, M. Vantard, F. Perez, P. M. P. van Bergen en Henegouwen, C. C. Hoogenraad, H. Ewers, L. C. Kapitein, Nat. Commun. 2015, 6, 7933.
         | Crossref | GoogleScholarGoogle Scholar | 26260773PubMed |

[12]  H. Liu, P. Dong, M. S. Ioannou, L. Li, J. Shea, H. A. Pasolli, J. B. Grimm, P. K. Rivlin, L. D. Lavis, M. Koyama, Z. Liu, Proc. Natl. Acad. Sci. USA 2018, 115, 343.
         | Crossref | GoogleScholarGoogle Scholar | 29284749PubMed |

[13]  T. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein, Proc. Natl. Acad. Sci. USA 2009, 106, 22287.
         | Crossref | GoogleScholarGoogle Scholar | 20018714PubMed |

[14]  F. Chen, P. W. Tillberg, E. S. Boyden, Science 2015, 347, 543.
         | Crossref | GoogleScholarGoogle Scholar | 25592419PubMed |

[15]  D. R. Whelan, T. Holm, M. Sauer, T. D. M. Bell, Aust. J. Chem. 2014, 67, 179.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. Brice, D. R. Whelan, N. Ito, K. Shimizu, L. Wiltzer-Bach, C. Y. Lo, D. Blondel, D. A. Jans, T. D. M. Bell, G. W. Moseley, Sci. Rep. 2016, 6, 33493.
         | Crossref | GoogleScholarGoogle Scholar | 27649849PubMed |

[17]  K. G. Lieu, A. Brice, L. Wiltzer, B. Hirst, D. A. Jans, D. Blondel, G. W. Moseley, J. Virol. 2013, 87, 8261.
         | Crossref | GoogleScholarGoogle Scholar | 23698294PubMed |

[18]  T. Dertinger, A. Pallaoro, G. Braun, S. Ly, T. A. Laurence, S. Weiss, Q. Rev. Biophys. 2013, 46, 210.
         | Crossref | GoogleScholarGoogle Scholar | 23672771PubMed |

[19]  P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, E. S. Boyden, Nat. Biotechnol. 2016, 34, 987.
         | Crossref | GoogleScholarGoogle Scholar | 27376584PubMed |

[20]  S. Truckenbrodt, M. Maidorn, D. Crzan, H. Wildhagen, S. Kabatas, S. O. Rizzoli, EMBO Rep. 2018, 19, e45836.
         | Crossref | GoogleScholarGoogle Scholar | 29987134PubMed |

[21]  S. Truckenbrodt, C. Sommer, S. O. Rizzoli, J. G. Danzl, Nat. Protoc. 2019, 14, 832.
         | Crossref | GoogleScholarGoogle Scholar | 30778205PubMed |

[22]  J. B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, E. S. Boyden, Nat. Methods 2017, 14, 593.
         | Crossref | GoogleScholarGoogle Scholar | 28417997PubMed |

[23]  D. Gambarotto, F. U. Zwettler, M. Le Guennec, M. Schmidt-Cernohorska, D. Fortun, S. Borgers, J. Heine, J.-G. Schloetel, M. Reuss, M. Unser, E. S. Boyden, M. Sauer, V. Hamel, P. Guichard, Nat. Methods 2019, 16, 71.
         | Crossref | GoogleScholarGoogle Scholar | 30559430PubMed |

[24]  C. K. Cahoon, Z. Yu, Y. Wang, F. Guo, J. R. Unruh, B. D. Slaughter, R. S. Hawley, Proc. Natl. Acad. Sci. USA 2017, 114, E6857.
         | Crossref | GoogleScholarGoogle Scholar | 28760978PubMed |

[25]  Y. Wang, Z. Yu, C. K. Cahoon, T. Parmely, N. Thomas, J. R. Unruh, B. D. Slaughter, R. S. Hawley, Nat. Protoc. 2018, 13, 1869.
         | Crossref | GoogleScholarGoogle Scholar | 30072723PubMed |

[26]  F. U. Zwettler, M.-C. Spindler, S. Reinhard, T. Klein, A. Kurz, M. Sauer, R. Benavente, bioRxiv 2019, 821298.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  R. Li, X. Chen, Z. Lin, Y. Wang, Y. Sun, Nanoscale 2018, 10, 17552.
         | Crossref | GoogleScholarGoogle Scholar | 30225472PubMed |

[28]  Z. Tong, P. Beuzer, Q. Ye, J. Axelrod, Z. Hong, H. Cang, bioRxiv 2016, 049403.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. B. Scheible, P. Tinnefeld, bioRxiv 2018, 265405.

[30]  H. Xu, Z. Tong, Q. Ye, T. Sun, Z. Hong, L. Zhang, A. Bortnick, S. Cho, P. Beuzer, J. Axelrod, Q. Hu, M. Wang, S. M. Evans, C. Murre, L.-F. Lu, S. Sun, K. D. Corbett, H. Cang, Proc. Natl. Acad. Sci. USA 2019, 116, 18423.
         | Crossref | GoogleScholarGoogle Scholar | 31444302PubMed |

[31]  P. Dedecker, F. C. De Schryver, J. Hofkens, J. Am. Chem. Soc. 2013, 135, 2387.
         | Crossref | GoogleScholarGoogle Scholar | 23317378PubMed |

[32]  B. Moeyaert, N. N. Bich, E. De Zitter, S. Rocha, K. Clays, H. Mizuno, L. van Meervelt, J. Hofkens, P. Dedecker, ACS Nano 2014, 8, 1664.
         | Crossref | GoogleScholarGoogle Scholar | 24410188PubMed |

[33]  N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, R. Y. Tsien, Nat. Biotechnol. 2004, 22, 1567.
         | Crossref | GoogleScholarGoogle Scholar | 15558047PubMed |

[34]  S. Duwe, W. Vandenberg, P. Dedecker, Chem. Commun. 2017, 53, 7242.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S. M. Rawlinson, T. Zhao, A. M. Rozario, C. L. Rootes, P. J. McMillan, A. W. Purcell, A. Woon, G. A. Marsh, K. G. Lieu, L.-F. Wang, H. J. Netter, T. D. M. Bell, C. R. Stewart, G. W. Moseley, Nat. Commun. 2018, 9, 3057.
         | Crossref | GoogleScholarGoogle Scholar | 30076298PubMed |

[36]  D. R. Whelan, T. D. M. Bell, Sci. Rep. 2015, 5, 7924.
         | Crossref | GoogleScholarGoogle Scholar | 25603780PubMed |

[37]  D. R. Whelan, T. D. M. Bell, J. Phys. Chem. Lett. 2015, 6, 374.
         | Crossref | GoogleScholarGoogle Scholar | 26261950PubMed |