closo-Borate aryliodonium zwitterions: convenient intermediates for functional closo-borane derivatives and molecular materials
Piotr Kaszyński
A
B
C
![]() Piotr Kaszyński is a professor of chemistry at the Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences and University of Łódź in Poland. He received his MSc degree from Warsaw Polytechnic in Poland in 1985, PhD degrees from the University of Texas at Austin in 1991 and the University of Łodź in 2007. He was a postdoctoral fellow at Caltech before joining Vanderbilt University in Nashville. In 2015, he moved the bulk of his research program to Polish Academy of Sciences and University of Łódź, while maintaining ties with Middle Tennessee State University in USA. He has published over 200 original papers, and several book chapters and reviews. |
Abstract
Zwitterionic aryliodonium derivatives of closo-borates are attractive intermediates in regioselective functionalization of anionic boron clusters through nucleophilic substitution with halides, and N-, O- and C-centered reagents. They are easily available in high yields by highly regioselective direct aryliodination of the closo-borate anions with ArIII species, typically PhI(OAc)2 and undergo four types of transformations: substitution through a rearrangement of a 10-I-3 species, dissociation to boronium ylides and trapping with the solvent, single electron transfer and homolysis of the 9-I-2 species to B–I products, and iodoaryl slippage to cage arylation byproducts. These zwitterions exhibit moderate and well-balanced thermal stability, which, in most cases, is sufficient for their isolation and synthetic applications. It depends on the closo-borane, position of the aryliodonium substituent, the presence of other substituents and finally the nature of the aryl group. The two-step process, aryliodination and substitution, can be regarded as a regioselective activation of the B–H bond for nucleophilic substitution. This review summarizes the formation, structure, stability and reactions of zwitterionic derivatives of 10- and 12-vertex closo-borate anions accumulated in the literature in the past decade.
Keywords: closo-borates, carboranes, functionalization, functional group transformations, hypervalent iodine, iodonium zwitterions, regioselectivity, synthesis.
![]() Piotr Kaszyński is a professor of chemistry at the Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences and University of Łódź in Poland. He received his MSc degree from Warsaw Polytechnic in Poland in 1985, PhD degrees from the University of Texas at Austin in 1991 and the University of Łodź in 2007. He was a postdoctoral fellow at Caltech before joining Vanderbilt University in Nashville. In 2015, he moved the bulk of his research program to Polish Academy of Sciences and University of Łódź, while maintaining ties with Middle Tennessee State University in USA. He has published over 200 original papers, and several book chapters and reviews. |
References
2 Poater J, Solà M, Viñas C, Teixidor F. π Aromaticity and three‐dimensional aromaticity: two sides of the same coin? Angew Chem Int Ed 2014; 53: 12191-12195.
| Crossref | Google Scholar | PubMed |
3 Jakubowski R, Januszko A, Tilford RW, Radziszewski GJ, Pietrzak A, Young VG, Jr, Kaszyński P. Photophysical behavior of self-organizing derivatives of 10- and 12-vertex p-carboranes, and their bicyclo[2.2.2]octane and benzene analogues. Chem Eur J 2023; 29: e202203948.
| Crossref | Google Scholar | PubMed |
4 Kaszyński P, Pakhomov S, Young VG, Jr. Investigations of electronic interactions between closo-boranes and triple-bonded substituents. Collect Czech Chem Commun 2002; 67: 1061-1083.
| Crossref | Google Scholar |
5 Pakhomov S, Kaszyński P, Young VG, Jr. 10-Vertex closo-boranes as potential π linkers for electronic materials. Inorg Chem 2000; 39: 2243-2245.
| Crossref | Google Scholar | PubMed |
6 Núñez R, Tarrés M, Ferrer-Ugalde A, de Biani FF, Teixidor F. Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metallacarboranes, and their derivatives. Chem Rev 2016; 116: 14307-14378.
| Crossref | Google Scholar | PubMed |
7 Kapuściński S, Abdulmojeed MB, Schafer TE, Pietrzak A, Hietsoi O, Friedli AC, Kaszyński P. Photonic materials derived from the [closo-B10H10]2– anion: Tuning photophysical properties in [closo-B10H8-1-X-10-(4-Y-NC5H4)]–. Inorg Chem Front 2021; 8: 1066-1082.
| Crossref | Google Scholar |
8 Jacob L, Rzeszotarska E, Koyioni M, Jakubowski R, Pociecha D, Pietrzak A, Kaszyński P. Tunable intermolecular charge transfer in ionic liquid crystalline derivatives of the [closo-B10H10]2- anion. Chem Mater 2022; 34: 6476-6491.
| Crossref | Google Scholar |
9 Kaszyński P. closo-Boranes as structural elements for liquid crystals. In: Hosmane NS, Eagling R, editors. Handbook of Boron Science: With Applications in Organometallics, Catalysis, Materials and Medicine. Vol. 3: Boron in Materials Chemistry; 2018. pp. 57–114. World Scientific. doi:10.1142/9781786344663_0002
10 Jacob L, Niedzicki L, Jakubowski R, Pociecha D, Kaszyński P. Lithium salt of a pro-mesogenic [closo-CB11H12]– derivative: anisotropic Li+ ion transport in liquid crystalline electrolytes. Dalton Trans 2024; 53: 10293-10302.
| Crossref | Google Scholar | PubMed |
11 Guschlbauer J, Niedzicki L, Jacob L, Rzeszotarska E, Pociecha D, Kaszyński P. Liquid crystalline electrolytes derived from the 1,12-disubstituted [closo-CB11H12]– anion. J Mol Liq 2023; 377: 121525.
| Crossref | Google Scholar |
12 Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The rise of boron-containing compounds: advancements in synthesis, medicinal chemistry, and emerging pharmacology. Chem Rev 2024; 124: 2441-2511.
| Crossref | Google Scholar | PubMed |
13 Hosmane NS, Eagling R, editors. Handbook of Boron Science: With Applications in Organometallics, Catalysis, Materials and Medicine. Vol. 1: Boron in Organometallic Chemistry. 2018. World Scientific. doi:10.1142/q0130-vol1
14 Hosmane NS, Eagling R, editors. Handbook of Boron Science: With Applications in Organometallics, Catalysis, Materials and Medicine. Vol. 2: Boron in Catalysis. 2018. World Scientific. doi:10.1142/q0130-vol2
15 Hosmane NS, Eagling R, editors. Handbook of Boron Science: With Applications in Organometallics, Catalysis, Materials and Medicine. Vol. 3: Boron in Materials Chemistry. 2018. World Scientific. doi:10.1142/q0130-vol3
16 Hosmane NS, Eagling R, editors. Handbook of Boron Science: With Applications in Organometallics, Catalysis, Materials and Medicine. Vol. 4: Boron in Medicine. 2018. World Scientific. doi:10.1142/q0130-vol4
17 Olid D, Núñez R, Viñas C, Teixidor F. Methods to produce B–C, B–P, B–N and B–S bonds in boron clusters. Chem Soc Rev 2013; 42: 3318-3336.
| Crossref | Google Scholar | PubMed |
18 Kanazawa J, Kitazawa Y, Uchiyama M. Recent progress in the synthesis of the monocarba-closo-dodecaborate(–) anions. Chem Eur J 2019; 25: 9123-9132.
| Crossref | Google Scholar | PubMed |
19 Sivaev IB, Bregadze VI, Sjöberg S. Chemistry of closo-dodecaborate anion [B12H12]2-: a review. Collect Czech Chem Commun 2002; 67: 679-727.
| Crossref | Google Scholar |
20 Sivaev IB, Prikaznov AV, Naoufal D. Fifty years of the closo-decaborate anion chemistry. Collect Czech Chem Commun 2010; 75: 1149-1199.
| Crossref | Google Scholar |
21 Shmal’ko AV, Sivaev IB. Chemistry of carba-closo-decaborate anions [CB9H10]– (Review). Russ J Inorg Chem 2019; 64: 1726-1749.
| Crossref | Google Scholar |
22 Merritt EA, Olofsson B. Diaryliodonium salts: a journey from obscurity to fame. Angew Chem Int Ed 2009; 48: 9052-9070.
| Crossref | Google Scholar | PubMed |
23 Yusubov MS, Maskaev AV, Zhdankin VV. Iodonium salts in organic synthesis. ARKIVOC 2011; 2011: 370-409.
| Crossref | Google Scholar |
25 Grushin VV, Demkina II, Tolstaya TP. Unified mechanistic analysis of polar reactions of diaryliodonium salts. J Chem Soc Perkin Trans 2 1992; 1992(4): 505-511.
| Crossref | Google Scholar |
26 Grushin VV, Shcherbina TM, Tolstaya TP. The reactions of phenyl(B-carboranyl)iodonium salts with nucleophiles. J Organomet Chem 1985; 292: 105-117.
| Crossref | Google Scholar |
27 Grushin VV. Carboranylhalonium ions: From striking reactivity to a unified mechanistic analysis of polar reactions of diarylhalonium compounds. Acc Chem Res 1992; 25: 529-536.
| Crossref | Google Scholar |
28 Miller HC, Hertler WR, Muetterties EL, Knoth WH, Miller NE. Chemistry of boranes. XXV. Synthesis and chemistry of base derivatives of B10H102– and B12H122–. Inorg Chem 1965; 4: 1216-1221.
| Crossref | Google Scholar |
29 Kaszyński P, Ringstrand B. Functionalization of closo-borates via iodonium zwitterions. Angew Chem Int Ed 2015; 54: 6576-6581.
| Crossref | Google Scholar | PubMed |
30 Rzeszotarska E, Novozhilova I, Kaszyński P. Convenient synthesis of [closo-B10H9-1-I]2– and [closo-B10H8-1,10-I2]2– anions. Inorg Chem 2017; 56: 14351-14356.
| Crossref | Google Scholar | PubMed |
31 Jakubowski R, Pietrzak A, Friedli AC, Kaszyński P. C(1)-Phenethyl derivatives of [closo-1-CB11H12]– and [closo-1-CB9H10]– anions: difunctional building blocks for molecular materials. Chem Eur J 2020; 26: 17481-17494.
| Crossref | Google Scholar | PubMed |
32 Żurawiński R, Jakubowski R, Domagała S, Kaszyński P, Woźniak K. Regioselective functionalization of the [closo-1-CB9H10]– anion through iodonium zwitterions. Inorg Chem 2018; 57: 10442-10456.
| Crossref | Google Scholar | PubMed |
33 Sivaev IB, Bregadze VI. Chemistry of cobalt bis(carbolides). A review. Collect Czech Chem Commun 1999; 64: 783-805.
| Crossref | Google Scholar |
34 Dash BP, Satapathy R, Swain BR, Mahanta CS, Jena BB, Hosmane NS. Cobalt bis(dicarbollide) anion and its derivatives. J Organomet Chem 2017; 849–850: 170-194.
| Crossref | Google Scholar |
35 Tokarz P, Kaszyński P, Domagała S, Woźniak K. The [closo-B12H11-1-IAr]– zwitterion as a precursor to monosubstituted derivatives of [closo-B12H12]2–. J Organomet Chem 2015; 798: 70-79.
| Crossref | Google Scholar |
36 Ali MO, Lasseter JC, Żurawiński R, Pietrzak A, Pecyna J, Wojciechowski J, Friedli AC, Pociecha D, Kaszyński P. Thermal and photophysical properties of highly quadrupolar liquid-crystalline derivatives of the [closo-B12H12]2- anion. Chem Eur J 2019; 25: 2616-2630.
| Crossref | Google Scholar | PubMed |
37 Kitazawa Y, Watanabe M, Masumoto Y, Otsuka M, Miyamoto K, Muranaka A, Hashizume D, Takita R, Uchiyama M. “Dumbbell”- and “clackers”-shaped dimeric derivatives of monocarba-closo-dodecaborate. Angew Chem Int Ed 2018; 57: 1501-1504.
| Crossref | Google Scholar | PubMed |
38 Ionov VM, Subbotin MY, Grushin VV, Tolstaya TP, Lisichina IN, Aslanov LA. Molecular and crystallographic structures of phenyl-9-o-carboranyliodonium iodide. J Struct Chem 1984; 24: 638-641.
| Crossref | Google Scholar |
39 Mebs S, Kalinowski R, Grabowsky S, Förster D, Kickbusch R, Justus E, Morgenroth W, Paulmann C, Luger P, Gabel D, Lentz D. Real-space indicators for chemical bonding. Experimental and theoretical electron density studies of four deltahedral boranes. Inorg Chem 2011; 50: 90-103.
| Crossref | Google Scholar | PubMed |
40 Jacob L, Rzeszotarska E, Pietrzak A, Young VG, Jr, Kaszyński P. Synthesis, structural analysis, and functional group interconversion in the [closo-B10H8-1,10-X2]2– (X = CN, OCRNMe2+, OCOR, and [OH2]+) derivatives. Eur J Inorg Chem 2020; 3083-3093.
| Crossref | Google Scholar |
41 Jakubowski R, Kapuściński S, Hietsoi O, Friedli AC, Kaszyński P. [closo-B10H8-10-PhI-1-COOH]– anion: an intermediate for functional anionic carboxylate ligands. Inorg Chem 2024; 63: 13831-13834.
| Crossref | Google Scholar | PubMed |
42 Voinova VV, Selivanov NA, Bykov AY, Kubasov AS, Zhdanov AP, Zhizhin KY, Kuznetsov NT. Synthesis and structure of trisubstituted closo-decaborane [B10H7(1-IPh)(6(7),10-NHOCCH3)]: specifics of interaction between the [2-B10H9NH=C(OH)CH3]– ion and PhI(OAc)2. Russ J Inorg Chem 2023; 68: 678-783.
| Crossref | Google Scholar |
43 McArthur SG, Jay R, Geng L, Guo J, Lavallo V. Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries. Chem Commun 2017; 53: 4453-4456.
| Crossref | Google Scholar | PubMed |
44 Kimata H, Sumitani R, Mochida T. Phase transitions and crystal structures of ionic plastic crystals comprising quaternary ammonium cations and carborane anion. Chem Lett 2019; 48: 859-862.
| Crossref | Google Scholar |
45 Hansch C, Leo A, Taft RW. Survey of Hammet substituent constants and resonance and field parameters. Chem Rev 1991; 91: 165-195.
| Crossref | Google Scholar |
46 Pietrzak A, Carr MJ, Kaszyński P. Substituent effects on the [closo-1-CB9H10]– anion geometry: experimental and DFT studies. CrystEngComm 2023; 25: 3790-3798.
| Crossref | Google Scholar |
47 Plešek J, Štibr B, Heřmanek SA. [8,8′-μ-I-3-Co(1,2-C2B9H10)2] Metallacarborane complex with an iodonium bridge. Evidence for a bromonium analog. Collect Czech Chem Commun 1984; 49: 1492-1496.
| Crossref | Google Scholar |
48 Bregadze VI, Kosenko ID, Lobanova I, Starikova A, Godovikov ZA, Sivaev IA, IB. C–H Bond activation of arenes by [8,8′-μ-I-3,3′-Co(1,2-C2B9H10)2] in the presence of sterically hindered Lewis bases. Organometallics 2010; 29: 5366-5372.
| Crossref | Google Scholar |
49 Li S, Qiu P, Kang J, Ma Y, Zhang Y, Yan Y, Jensen TR, Guo Y, Zhang J, Chen X. Iodine-substituted lithium/sodium closo-decaborates: syntheses, characterization, and solid-state ionic conductivity. ACS Appl Mater Interfaces 2021; 13: 17554-17564.
| Crossref | Google Scholar | PubMed |
50 Bil’bulyan AA, Nelyubin AV, Selivanov NA, Bykov AY, Klyukin IN, Zhdanov AP, Zhizhin KY, Kuznetsov NT. New method for synthesis of substituted 1-amidine-closo-decaborates [1-B10H9NH=C(R1)NHR2] (R1 = Me, iPr, Ph; R2 = nBu, Bn). Russ J Inorg Chem 2023; 68: 1511-1515.
| Crossref | Google Scholar |
51 Jakubowski R, Abdulmojeed MB, Hietsoi O, Friedli AC, Kaszyński P. [closo-B10H8‐1-CN-10-Azinium]– anions: photoactive heteroditopic ligands for metal complexes. Inorg Chem 2024; 63: 17774-17784.
| Crossref | Google Scholar | PubMed |
52 Golubev AV, Baltovskaya DV, Kubasov AS, Bykov AY, Zhizhin KY, Kuznetsov NT. Synthesis of 1,10-disulfanyl-closo-decaborate anion and its disulfonium tetraacetylamide derivative. Russ J Inorg Chem 2024; 69: 649-658.
| Crossref | Google Scholar |
53 Ali MO, Pociecha D, Wojciechowski J, Novozhilova I, Friedli AC, Kaszyński P. Highly quadrupolar derivatives of the [closo-B10H10]2- anion: investigation of liquid crystalline polymorphism in an homologous series of 1,10-bis(4-alkoxypyridinium) zwitterions. J Organomet Chem 2018; 865: 226-233.
| Crossref | Google Scholar |
54 Hietsoi O, Kapuściński S, Friedli AC, Kaszyński P. [closo-B10H8-1,10-(NHC(=NH2)Me)2]: a rare zwitterionic amidinium derivative. J Mol Struct 2023; 1284: 135324.
| Crossref | Google Scholar |
55 Voinova VV, Selivanov NA, Plyushchenko IV, Vokuev MF, Bykov AY, Klyukin IN, Novikov AS, Zhdanov AP, Grigoriev MS, Rodin IA, Zhizhin KY, Kuznetsov NT. Fused 1,2-diboraoxazoles based on closo-decaborate anion–novel members of diboroheterocycle class. Molecules 2021; 26: 248.
| Crossref | Google Scholar | PubMed |
56 Jakubowski R, Pecyna J, Ali MO, Pietrzak A, Friedli AC, Kaszyński P. Polar derivatives of [closo-1-CB9H10]- and [closo-1-CB11H12]– anions as high Δε additives to a nematic host: a comparison of the CH2CH2 and COO linking groups. Dalton Trans 2021; 50: 3671-3681.
| Crossref | Google Scholar | PubMed |
57 Nelyubin AV, Selivanov NA, Bykov AY, Klyukin IN, Novikov AS, Zhdanov AP, Zhizhin KY, Kuznetsov NT. N-Borylated hydroxylamines [B12H11NH2OH]– as a novel type of substituted derivative of the closo-dodecaborate anion. Russ J Inorg Chem 2020; 65: 795-799.
| Crossref | Google Scholar |
58 Burdenkova AV, Zhdanov AP, Klyukin IN, Selivanov NA, Bykov AY, Zhizhin KY, Kuznetsov NT. Synthesis of derivatives of closo-dodecaborate anion based on amino acid esters. Russ J Inorg Chem 2021; 66: 1616-1620.
| Crossref | Google Scholar |
59 Sun Y, Zhang J, Zhang Y, Liu J, van der Veen S, Duttwyler S. The closo-dodecaborate dianion fused with oxazoles provides 3D diboraheterocycles with selective antimicrobial activity. Chem Eur J 2018; 24: 10364-10371.
| Crossref | Google Scholar | PubMed |
60 Pecyna J, Żurawiński R, Kaszyński P, Pociecha D, Zagórski P, Pakhomov S. Polar liquid crystals derived from sulfonium zwitterions of the [closo-1-CB11H12]– anion. Eur J Inorg Chem 2016; 2923-2931.
| Crossref | Google Scholar |
61 Zhu TC, Xing YY, Sun Y, Duttwyler S, Hong X. Directed B–H functionalization of the closo-dodecaborate cluster via concerted iodination–deprotonation: reaction mechanism and origins of regioselectivity. Org Chem Front 2020; 7: 3648-3655.
| Crossref | Google Scholar |
62 Middaugh RL. Photolytic and electrolytic reduction of iodobenzenenonahydro-closo-decaborate(1-) ion, an anionic analog of diphenyliodonium ion, and preparation of 1-iodononahydro-closo-decaborate(2-) ion. Inorg Chem 1974; 13: 744-745.
| Crossref | Google Scholar |