Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Integrated air-quality monitoring – combined use of measurements and models in monitoring programmes

Ole Hertel A B , Thomas Ellermann A , Finn Palmgren A , Ruwim Berkowicz A , Per Løfstrøm A , Lise Marie Frohn A , Camilla Geels A , Carsten Ambelas Skjøth A , Jørgen Brandt A , Jesper Christensen A , Kåre Kemp A and Matthias Ketzel A
+ Author Affiliations
- Author Affiliations

A National Environmental Research Institute, University of Aarhus, PO Box 358, Frederiksborgvej 399, Roskilde 4000, Denmark.

B Corresponding author. Email: Ole.Hertel@dmu.dk

Environmental Chemistry 4(2) 65-74 https://doi.org/10.1071/EN06077
Submitted: 9 December 2006  Accepted: 27 February 2007   Published: 17 April 2007

Environmental context. Optimisation of allocated resources, improved quality, and better understanding of processes – these are the main advantages of applying integrated monitoring (IM). The paper describes IM as a combination of air pollution measuring and modelling, and describes how it is implemented in air-quality management in Denmark. However, the IM concept may also be applied to follow air-quality levels in other countries that currently do not have a corresponding system. It may also be applied to the environmental monitoring of other compartments.

Abstract. Integrated air-quality monitoring (IM) is here defined as monitoring based on the combination of results of atmospheric measurements from usually fixed site stations, and results obtained from calculations with air-quality models. This paper outlines experience from the use of IM at the National Environmental Research Institute (NERI) within the two nationwide air-quality monitoring programmes for the Danish urban and rural environments, respectively. The measurements in these Danish monitoring programmes are used to determine actual levels and trends in pollutant concentrations and depositions of pollutants. The measurements are further used for process understanding, and for the development and validation of air-quality models. The results from the air-quality models are used in the interpretation of measurements, but they are also used to provide information about, for example, source apportionment. The model calculations are used to extend the geographical coverage of the monitoring, and to provide information about pollution loads at locations or regions that are not well covered by the limited number of measurement stations in the monitoring programmes. Finally, the air-quality models are applied to carry out scenario studies of future pollution loads, e.g. assessment of the effects of various emission reduction strategies. NERI operates and holds the overall responsibility for the Danish air-quality monitoring programmes. These monitoring programmes are designed to fulfil the Danish obligations in relation to the EU directives on air quality, as well as the Danish obligations in relation to the reporting of data to international organisations (EMEP, HELCOM, OSPARCOM, and WHO). The obtained results from the use of IM form the basis for the national assessment of the air pollution loads in relation to protection of the aquatic and terrestrial environment; in these assessments the use of IM plays a central role.

Additional keywords: air-quality measurements and models, atmospheric chemistry, atmospheric deposition, modelling (cycling and circulation), temporal and spatial resolution in monitoring.


Acknowledgements

In this article measurements and model calculations from the two national nation-wide monitoring programmes for the Danish rural (BOP) and urban (LMP) areas have been presented. The main author (O.H.) was supported by a grant from the Carlsberg foundation.


References


[1]   J. W. Erisman , A. Hensen , J. Mosquera , M. Sutton , D. Fowler , Deposition monitoring networks: what monitoring is required to give reasonable estimates of ammonia/ammonium? Environ. Pollut. 2005 , 135,  419.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[2]   P. Wåhlin , COPREM—A multivariate receptor model with a physical approach Atmos. Environ. 2003 , 37,  4861.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   Skov H., Bossi R., Wåhlin P., Vikelsø J., Christensen J., Egeløv A. H., Heidam N. Z., Jensen B., et al.Contaminants in the Atmosphere. AMAP-Nuuk, Westgreenland 2002–2004, Technical Reports from NERI 547 2005, p. 45 (National Environmental Research Institute, Ministry of the Environment: Roskilde, Denmark).

[4]   Kemp K., Ellermann T., Palmgren F., Wåhlin P., The Danish Air Quality Monitoring Programme, Annual Summary for 2005, NERI Technical Report No. 584 2006, p. 42 (National Environmental Research Institute: Roskilde, Denmark).

[5]   Ellermann T., Mogensen B. B., Geels C., Monies C., Andersen H. V., Christensen J., Brandt J., Kemp K., et al. Atmospheric Deposition 2005, NOVANA (In Danish: Atmosfærisk Deposition 2005, NOVANA), Technical Reports 595 2006, p. 66 (National Environmental Research Institute: Roskilde, Denmark).

[6]   EC, Proposal for a Directive of the European Parliament and of the Council on Ambient Air Quality and Cleaner Air for Europe, 23 October 2006 (The Council of the European Union: Brussels, Belgium).

[7]   EC, Directive 2004/107/EC of the European Parliament and of the Council relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air, 15 December 2004 (The Council of the European Union: Brussels, Belgium).

[8]   Danish Government, The Danish Aquatic Action Plan III 2004 (Danish Forest and Nature Protection Agency, Ministry of Food, Agriculture and Fishery: Copenhagen East, Denmark).

[9]   R. Berkowicz , OSPM—A parameterised street pollution model Environ. Monit. Assess. 2000 , 65,  323.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   H. R. Olesen , Regulatory Dispersion Modeling in Denmark Int. J. Environ. Pollut. 1995 , 5,  412.
         open url image1

[11]   R. Berkowicz , A simple model for urban background pollution. Environ. Monit. Assess. 2000 , 65,  259.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   L. M. Frohn , J. H. Christensen , J. Brandt , O. Hertel , Development of a high resolution integrated nested model for studying air pollution in Denmar.k Phys. Chem. Earth Pt B 2001 , 26,  769.
         open url image1

[13]   J. Brandt , J. H. Christensen , L. M. Frohn , R. Berkowicz , Operational air pollution forecasts from regional scale to urban street scale. Part 1: System description. Phys. Chem. Earth Part B 2001 , 26,  781.
        | Crossref |  open url image1

[14]   J. Brandt , J. H. Christensen , L. M. Frohn , R. Berkowicz , Operational air pollution forecasts from regional scale to urban street scale. Part 2: Performance evaluation. Phys. Chem. Earth Part B 2001 , 26,  825.
         open url image1

[15]   J. Brandt , J. H. Christensen , L. M. Frohn , F. Palmgren , R. Berkowicz , Z. Zlatev , Operational air pollution forecasts from European to local scale. Atmos. Environ. 2001 , 35,  91.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   Grell G. A., Dudhia J., Stauffer D. R., A description of the fifth-generation Penn State/NCAR mesoscale model (MM5) 1994, p. 117. NCAR Technical Note. (Department of Meterology, The Pennsylvania State University: University Park, PA).

[17]   C. A. Skjøth , O. Hertel , T. Ellermann , Use of the ACDEP trajectory model in the Danish nation-wide Background Monitoring Programme. Phys. Chem. Earth 2002 , 27,  1469.
         open url image1

[18]   Ellermann T., Hertel O., Skov H., Manscher O. H., Atmosfærisk Deposition af Kvælstof - Målemetoder og modelberegninger, Faglig rapport fra DMU nr. 174 1996, p. 57 (Miljøministeriet, Danmarks Miljøundersøgelser: Roskilde, Denmark).

[19]   O. Hertel , J. Christensen , E. H. Runge , W. A. H. Asman , R. Berkowicz , M. F. Hovmand , Ø. Hov , Development and Testing of A New Variable Scale Air-Pollution Model – Acdep. Atmos. Environ. 1995 , 29,  1267.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   Gery M. W., Whitten G. Z., Killus J. P., Development and testing of the CBM-IV for urban and regional modeling, EPA-6009/3-88-012 1989 (US EPA: Research Triangle Park, NC).

[21]   O. Hertel , R. Berkowicz , J. Christensen , Ø. Hov , Test of 2 Numerical Schemes for Use in Atmospheric Transport-Chemistry Models. Atmos. Environ. A: Gen. 1993 , 27,  2591.
         open url image1

[22]   J. H. Christensen , The Danish Eulerian hemispheric model - A three-dimensional air pollution model used for the Arctic. Atmos. Environ. 1997 , 31,  4169.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   L. M. Frohn , J. H. Christensen , J. Brandt , Development and testing of numerical methods for two-way nested air pollution modelling. Phys. Chem. Earth 2002 , 27,  1487.
         open url image1

[24]   L. M. Frohn , J. H. Christensen , J. Brandt , Development of a high-resolution nested air pollution model – The numerical approach J. Comput. Phys. 2002 , 179,  68.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   Simpson D., Fagerli H., Jonson J. E., Tsyro S., Wind P., Tuovinen J.-P., Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe, PART I. Unified EMEP Model Description. EMEP Status Report 2003 2003, p. 104 (MSC-W of EMEP, The Norwegian Meteorological Institute: Oslo, Norway).

[26]   Hertel O., Geels C., Løfstrøm P., Frohn L., Frydendall J., Skjøth C. A., Bak J., Gyldenkærne S., et al. Regulation of Ammonia from Agriculture in Denmark. Workshop on Agricultural Air Quality – State of Science (Eds V. Aneja, W. H. Schlesinger, R. Knighton, G. Jennings, D. Niyogi, W. Gilliam, C. S. Duke) 2006, pp. 396–403 (North Carolina State University: Raleigh).

[27]   O. Hertel , C. A. Skjøth , P. Løfstrøm , C. Geels , L. M. Frohn , T. Ellermann , P. V. Madsen , Modelling nitrogen deposition on a local scale—A review of the current state of the art. Environ. Chem. 2006 , 3,  317.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   Danish E. P. A., The Air Quality Guideline (In Danish Luftvejledningen), Guidelines from the Danish EPA Guideline 2/2001 2001, p. 109 (Danish Ministry of the Environment, Danish Environmental Protection Agency: Copenhagen, Denmark).

[29]   C. A. Skjøth , O. Hertel , S. Gyldenkærne , T. Ellermann , Implementing a dynamical ammonia emission parameterization in the large-scale air pollution model ACDEP. J. Geophys. Res. Atmos. 2004 , 109,  D06306.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   S. Gyldenkærne , C. A. Skjøth , O. Hertel , T. Ellermann , A dynamical ammonia emission parameterization for use in air pollution models. J. Geophys. Res. Atmos. 2005 , 110,  D07108.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   R. Grant , G. Blicher-Mathiesen , Danish policy measures to reduce diffuse nitrogen emissions from agriculture to the aquatic environment. Water Sci. Technol. 2004 , 49,  91.
        | PubMed |  open url image1

[32]   Ellermann T., Andersen H. V., Bossi R., Brandt J., Christensen J., Frohn L. M., Geels C., Kemp K., et al. Atmospheric Deposition 2005 – NOVANA (In Danish: Atmosfærisk Deposition 2005 – NOVANA), NERI Technical Reports No. 595 2006, p. 66 (National Environmental Research Institute, Ministry of the Environment: Roskilde, Denmark).

[33]   Andersen J. M., Boutrup S., van der Bijl L., Svendsen L. M., Bøgestrand J., Grant R., Lauridsen T. L., Ellermann T., et al. Aquatic and Terrestrial Environment 2004 – State and trend – technical summary, NERI Technical Reports No. 579 2006, p. 136 (National Environmental Research Institute: Roskilde, Denmark).

[34]   L. Spokes , T. Jickells , K. Weston , B. G. Gustafsson , M. Johnsson , B. Liljebladh , D. Conley , C. Ambelas-Skjøth , et al. MEAD: An interdisciplinary study of the marine effects of atmospheric deposition in the Kattegat. Environ. Pollut. 2006 , 140,  453.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[35]   O. Hertel , T. Ellermann , C. A. Skjøth , J. Frydendall , Influence of the local sources on the atmospheric nitrogen deposition in Denmark. Asian Chem. Lett. 2003 , 7,  123.
         open url image1

[36]   Palmgren F., Glasius M., Wåhlin P., Ketzel M., Berkowicz R., Jensen S. S., Winther M., Illerup J. B., et al. Air pollution with particles in Denmark (In Danish: Luftforurening med partikler i Danmark), Miljøprojekt 1021 2005, p. 91 (Danish Environmental Protection Agency: Copenhagen, Denmark).

[37]   R. Berkowicz , F. Palmgren , O. Hertel , E. Vignati , Using measurements of air pollution in streets for evaluation of urban air quality-meteorological analysis and model calculations. Sci. Total Environ. 1996 , 189–190,  259.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   F. Palmgren , R. Berkowicz , O. Hertel , E. Vignati , Effects of reduction of NOx on the NO2 levels in urban streets. Sci. Total Environ. 1996 , 189–190,  409.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   Berkowicz R., Palmgren F., Jensen S. S., Analysis of enhanced NO2 levels in Copenhagen and prognoses for 2010 (In Danish: Analyse af forhøjet NO2 niveau i København og prognose for 2010), Technical Reports from NERI 498 2004, p. 34 (National Environmental Research Institute: Roskilde, Denmark).

[40]   S. S. Jensen , R. Berkowicz , H. S. Hansen , O. Hertel , A Danish decision-support GIS tool for management of urban air quality and human exposures. Transp. Res. Part Transp. Environ. 2001 , 6,  229.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   O. Hertel , F. A. A. M. De Leeuw , O. Raaschou-Nielsen , S. S. Jensen , D. Gee , O. Herbarth , S. Pryor , F. Palmgren , et al. Human exposure to outdoor air pollution (IUPAC technical report). Pure Appl. Chem. 2001 , 73,  933.
         open url image1

[42]   Kemp K., Ellermann T., Palmgren F., Wåhlin P., Air Quality Monitoring Programme. Annual Summary for 2004. Technical Report from NERI 544 2005, p. 66 (National Environmental Research Institute: Roskilde, Denmark).

[43]   Jensen S. S., Ketzel M., Berkowicz R., Palmgren F., Høj J., Krawach S., Strategies for compliance with NO2 limit values for air quality in Copenhagen (In Danish: Virkemidler til overholdelse af NO2 grænseværdier i København) 2005, p. 111 (Environmental Protection Agency, Municipality of Copenhagen: Copenhagen, Denmark).




1 The two national nation-wide air quality monitoring programmes in Denmark are described on the web page of NERI at: http://www2.dmu.dk/1_Viden/2_miljoe-tilstand/3_luft/4_maalinger/default_en.asp. This web page provides detailed maps for the locations of all the monitoring stations together with lists of measured compounds and descriptions of the applied measuring techniques. Furthermore, it provides access to the most recent measured values as well as plots of observed trends in concentrations and depositions.

2 From 1 January 2007 a new structural reform was implemented in Denmark. Previously the country had 13 counties and 270 municipalities, and after the structural reform the local authorities consists of 5 regions and 98 municipalities.

3 The THOR system is named after the weather god THOR in the old Nordic mythology. The THOR scenario and air pollution forecasting system is described in detail on the NERI web page http://thor.dmu.dk, where the pollutant forecasts can also be obtained.

4 The local municipalities of Copenhagen and Aalborg financially support the THOR calculations for these two cities.