Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Humic acid complexation to Zn and Cd determined with the new electroanalytical technique AGNES

Encarnació Companys A , Jaume Puy A and Josep Galceran A B
+ Author Affiliations
- Author Affiliations

A Departament de Química, Universitat de Lleida, Rovira Roure 191, E-25198 Lleida, Spain.

B Corresponding author. Email: galceran@quimica.udl.cat

Environmental Chemistry 4(5) 347-354 https://doi.org/10.1071/EN07051
Submitted: 27 July 2007  Accepted: 3 September 2007   Published: 2 November 2007

Environmental context. Humic substances are complex mixtures that play an important role in trace metal bioavailability in soils and aquatic environments. The bioavailability of a metal depends on what chemical forms, or species, it is in. We need to know how much of the metal is present as a free metal ion in solution, and how much is bound up in complexes with humic acids, for example. This work reports the complexation of Cd and Zn to humic acids by means of a simple and robust technique, AGNES (absence of gradients and Nernstian equilibrium stripping).

Abstract. AGNES (absence of gradients and Nernstian equilibrium stripping), an emerging electroanalytical technique specifically designed for the determination of the free concentration of heavy metals in aqueous solutions, is here implemented to characterise the binding of CdII and ZnII to a soil humic acid. A set of metal titration experiments were performed by adding Cd or Zn to a purified humic acid (Aldrich) at pH 4, 5, 6 and 7 and measuring the free metal concentration by AGNES. The application of a program with two potential steps along the deposition stage allows for the reduction of the deposition time in the humic titration. The polyelectrolytic effects of the macromolecular ligand were taken into account through the Donnan model. Data free of electrostatic effects were reasonably described by the NICA isotherm, which accounts for heterogeneity, considering just a monomodal distribution (because of the range of pH covered). The obtained affinity parameters indicate a similar strength for Zn and Cd binding to the purified humic acid.

Additional keywords: AGNES, bioavailability, humic acids, metal binding, speciation.


Acknowledgements

Experiments were conducted with the help of Silvia Cerdán and Anna Sedó, whose contribution is gratefully acknowledged. The authors also thank the support of this research by the Spanish Ministry of Education and Science (Projects CTQ2006-14385 and CTM2006-13583) and from the ‘Comissionat d’Universitats i Recerca de la Generalitat de Catalunya’.


References


[1]   Campbell P. G. C., in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 45–102 (Wiley: Chichester, UK).

[2]   Galceran J., van Leeuwen H. P., in Physicochemical kinetics and transport at chemical-biological surfaces. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Eds H. P. van Leeuwen, W. Koester) 2004, pp. 147–203 (Wiley: Chichester, UK).

[3]   Y. Dudal , F. Gerard , Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories and applications. Earth Sci. Rev. 2004 , 66,  199.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   Tipping E., Cation Binding by Humic Substances 2002 (Cambridge University Press: Cambridge, UK).

[5]   L. K. Koopal , T. Saito , J. P. Pinheiro , W. H. van Riemsdijk , Ion binding to natural organic matter: General considerations and the NICA-Donnan model. Colloid Surface A 2005 , 265,  40.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   P. Buhlmann , E. Pretsch , E. Bakker , Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 1998 , 98,  1593.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[7]   E. Bakker , P. Buhlmann , E. Pretsch , Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997 , 97,  3083.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[8]   N. Serrano , J. M. Díaz-Cruz , C. Arino , M. Esteban , J. Puy , E. Companys , J. Galceran , J. Cecilia , Full-wave analysis of stripping chronopotentiograms at scanned deposition potential (SSCP) as a tool for heavy metal speciation: Theoretical development and application to Cd(II)-phthalate and Cd(II)-iodide systems. J. Electroanal. Chem. 2007 , 600,  275.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   R. M. Town , M. Filella , Implications of natural organic matter binding heterogeneity on understanding lead(II) complexation in aquatic systems. Sci. Total Environ. 2002 , 300,  143.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   N. S. Randhawa , F. E. Broadbent , Soil organic matter-metal complexes: 6. Stability constants of Zinc-Humic Acids complexes at different pH values. Soil Sci. 1965 , 99,  362.
         open url image1

[11]   H. van Dijk , Cation binding of Humic Acids. Geoderma 1971 , 5,  53.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   M. L. Sohn , M. C. Hughes , Metal-ion complex-formation constants of some sedimentary humic acids with Zn(II), Cu(II) and Cd(II). Geochim. Cosmochim. Ac. 1981 , 45,  2393.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   T. I. Nifant’eva , P. Burba , O. Fedorova , V. M. Shkinev , B. Y. Spivakov , Ultrafiltration and determination of Zn- and Cu-humic substances complexes stability constants. Talanta 2001 , 53,  1127.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   L. A. Oste , E. J. M. Temminghoff , T. M. Lexmond , W. H. van Riemsdijk , Measuring and Modeling zinc and cadmium binding by humic acid. Anal. Chem. 2002 , 74,  856.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[15]   Brainina K. Z., Neyman E. Y., Electroanalytical Stripping Methods 1993 (Wiley: New York).

[16]   I. I. Fasfous , C. L. Chakrabarti , J. Murimboh , T. Yapici , Complexation of lead in model solutions of humic acid: Heterogeneity and effects of competition with copper, nickel, and zinc. Environ. Chem. 2006 , 3,  276.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   H. P. van Leeuwen , R. M. Town , Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 1. Fundamental features. J. Electroanal. Chem. 2002 , 536,  129.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   M. E. Abdelsalam , G. Denuault , S. Daniele , Calibrationless determination of cadmium, lead and copper in rain samples by stripping voltammetry at mercury microelectrodes – Effect of natural convection on the deposition step. Anal. Chim. Acta 2002 , 452,  65.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   F. Berbel , J. M. Díaz-Cruz , C. Arino , M. Esteban , F. Mas , J. L. Garcés , J. Puy , Voltammetric analysis of heterogeneity in metal ion binding by humics. Environ. Sci. Technol. 2001 , 35,  1097.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[20]   E. Companys , J. Puy , M. Torrent , J. Galceran , J. Salvador , J. L. Garcés , F. Mas , Binding curve from normalised limiting currents of labile heterogeneous metal-macromolecular systems. The case of Cd/humic acid. Electroanalysis 2003 , 15,  452.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   H. P. van Leeuwen , R. M. Town , J. Buffle , R. Cleven , W. Davison , J. Puy , W. H. van Riemsdijk , L. Sigg , Dynamic speciation analysis and Bioavailability of metals in Aquatic Systems. Environ. Sci. Technol. 2005 , 39,  8545.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[22]   J. Galceran , E. Companys , J. Puy , J. Cecília , J. L. Garcés , AGNES: a new electroanalytical technique for measuring free metal ion concentration. J. Electroanal. Chem. 2004 , 566,  95.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   E. Companys , J. Cecília , G. Codina , J. Puy , J. Galceran , Determination of the concentration of free Zn2+ with AGNES using different strategies to reduce the deposition time. J. Electroanal. Chem. 2005 , 576,  21.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   J. Galceran , C. Huidobro , E. Companys , G. Alberti , AGNES: a technique for determining the concentration of free metal ions. The case of Zn(II) in coastal Mediterranean seawater. Talanta 2007 , 71,  1795.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   G. Alberti , R. Biesuz , C. Huidobro , E. Companys , J. Puy , J. Galceran , A comparison between the determination of free Pb(II) by two techniques: Absence of gradients and Nernstian equilibrium stripping and Resin Titration. Anal. Chim. Acta 2007 , 599,  41.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[26]   C. Huidobro , E. Companys , J. Puy , J. Galceran , J. P. Pinheiro , The use of microelectrodes with AGNES. J. Electroanal. Chem. 2007 , 606,  134.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   D. G. Kinniburgh , C. J. Milne , M. F. Benedetti , J. P. Pinheiro , J. Filius , L. K. Koopal , W. H. van Riemsdijk , Metal-ion binding by Humic-Acid – Application of the Nica-Donnan model. Environ. Sci. Technol. 1996 , 30,  1687.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   M. F. Benedetti , W. H. van Riemsdijk , L. K. Koopal , Humic substances considered as a heterogeneous donnan gel phase. Environ. Sci. Technol. 1996 , 30,  1805.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   J. A. Marinsky , J. Ephraim , A unified physicochemical description of the protonation and metal-ion complexation equilibria of natural organic-acids (Humic and Fulvic-Acids). 1. Analysis of the influence of polyelectrolyte properties on protonation equilibria in ionic media – Fundamental-concepts. Environ. Sci. Technol. 1986 , 20,  349.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   J. A. Marinsky , S. Gupta , P. Schindler , A unified physicochemical description of the equilibria encountered in Humic-Acid gels. J. Colloid. Interf. Sci. 1982 , 89,  412.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   J. Ephraim , S. Alegret , A. Mathuthu , M. Bicking , R. L. Malcolm , J. A. Marinsky , A united physicochemical description of the protonation and metal-ion complexation equilibria of natural organic-acids (Humic and Fulvic Acids). 2. Influence of polyelectrolyte properties and functional-group heterogeneity on the protonation equilibria of Fulvic Acid. Environ. Sci. Technol. 1986 , 20,  354.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   C. J. Milne , D. G. Kinniburgh , E. Tipping , Generic NICA-Donnan model parameters for proton binding by humic substances. Environ. Sci. Technol. 2001 , 35,  2049.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[33]   D. G. Kinniburgh , W. H. van Riemsdijk , L. K. Koopal , M. Borkovec , M. F. Benedetti , M. J. Avena , Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surface A 1999 , 151,  147.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   L. K. Koopal , W. H. van Riemsdijk , D. G. Kinniburgh , Humic matter and contaminants. General aspects and modeling metal ion binding. Pure Appl. Chem. 2001 , 73,  2005.
        | Crossref |  open url image1

[35]   W. H. van Riemsdijk , L. K. Koopal , D. G. Kinniburgh , M. F. Benedetti , L. P. Weng , Modeling the interactions between humics, ions, and mineral surfaces. Environ. Sci. Technol. 2006 , 40,  7473.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[36]   Companys E., Speciation of heavy metals in macromolecular systems by electroanalytical techniques 2003, Ph.D. thesis, Universitat de Lleida, Catalonia, Spain.

[37]   E. Companys , J. L. Garces , J. Salvador , J. Galceran , J. Puy , F. Mas , Electrostatic and specific binding to macromolecular ligands. A general analytical expression for the Donnan volume. Colloid Surface A 2007 , 306,  2.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   Vogel A. I., Textbook of Quantitative Chemical Analysis, 6th edn 2000 (Pearson Education: Harlow).

[39]   Allison J. D., Brown D. S., Novo-Gradac K. J., MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: version 3.0 user’s manual. EPA 600/3-91/021 1991 (U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC).

[40]   C. J. Milne , D. G. Kinniburgh , W. H. van Riemsdijk , E. Tipping , Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003 , 37,  958.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[41]   G. K. Brown , P. MacCarthy , J. A. Leenheer , Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert’s method. Anal. Chim. Acta 1999 , 402,  169.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1




Accessory materials

Details on the practical implementation of the NICA–Donnan model and on the proton titration of PAHA are available from the authors (http://web.udl.es/usuaris/q4088428/Publications/Publicacions.html), from the corresponding author or from Environmental Chemistry.