Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

In search of potential source regions of semi-volatile organic contaminants in air in the Yukon Territory, Canada from 2007 to 2009 using hybrid receptor models

John N. Westgate A , Uwayemi M. Sofowote B , Pat Roach C , Phil Fellin D , Ivy D’Sa E , Ed Sverko E , Yushan Su F , Hayley Hung F and Frank Wania A G
+ Author Affiliations
- Author Affiliations

A Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

B Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada.

C Aboriginal Affairs and Northern Development Canada, 415C-300 Main Street, Whitehorse, YT, Y1A 2B5, Canada.

D AirZOne Ltd, 222 Matheson Boulevard, Mississauga, ON, L4Z 1X1, Canada.

E National Laboratory for Environmental Testing, Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON, L7R 4A6, Canada.

F Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada.

G Corresponding author. Email: frank.wania@utoronto.ca

Environmental Chemistry 10(1) 22-33 https://doi.org/10.1071/EN12164
Submitted: 26 October 2012  Accepted: 10 December 2012   Published: 27 February 2013

Environmental context. Some long-lived organic contaminants, such as chlorinated organics, brominated flame retardants and polycyclic aromatic hydrocarbons, can undergo transport through the atmosphere to remote regions. A series of measurements of these compounds taken over almost 3 years in the air at a remote location was combined with meteorological data to try to reveal potential source areas. After adjusting several parameters to optimise the method’s ability to identify sources it was found that for most contaminants no definitive sources are revealed.

Abstract. A suite of brominated flame retardants, chlorinated organic pesticides and some metabolites thereof were analysed in week-long and day-long air samples collected at Little Fox Lake in Canada’s Yukon Territory from 2007 to 2009. Several trajectory-based methods for source region identification were applied to this dataset, as well as to polycyclic aromatic hydrocarbon (PAH) concentrations in those same samples reported previously. A type of concentration weighted trajectory (CWT) analysis, using a modified grid to avoid difficulties near the Earth’s poles, and removing trajectory endpoints at altitudes greater than 700 m did not identify distinct source regions for most analytes. Decreasing the spatial resolution of the grid made interpretation simpler but reinforced patterns that may have stemmed from single trajectories. The potential source contribution function (PSCF) is similar to CWT but treats the concentration data categorically, rather than numerically. PSCF provides more distinct results, highlighting the Arctic Ocean as a potential source of para,para′-dichlorodiphenyldichloroethene and both northern Siberia and Canada’s Yukon and Northwest Territories as potential sources of PAHs. To simulate the uncertainty associated with individual trajectories, a set of trajectories was also generated for six points surrounding the sampling station and included in the trajectory analyses. This had the effect of smoothing the CWT and PSCF values for those analytes with no clearly definable sources, and highlighting the source regions for the two that did. For the bulk of the analytes discussed here, Little Fox Lake is well positioned to act as a background monitoring site.


References

[1]  T. F. Bidleman, Atmospheric processes: wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning. Environ. Sci. Technol. 1988, 22, 361.
Atmospheric processes: wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhslamurw%3D&md5=e4ae5dbccb2e98c70291667b2c296459CAS |

[2]  H. Hung, R. Kallenborn, K. Breivik, Y. Su, E. Brorström-Lundén, K. Olafsdottir, J. M. Thorlacius, S. Leppänen, R. Bossi, H. Skov, S. Manø, G. W. Patton, G. Stern, E. Sverko, P. Fellin, Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci. Total Environ. 2010, 408, 2854.
Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntV2is7c%3D&md5=148add28eded95a86c0f2fe5ebaab9e8CAS |

[3]  Stockholm Convention on Persistent Organic Pollutants. Available at http://www.pops.int/ [Verified 17 July 2012].

[4]  Convention on Long-Range Transboundary Air Pollution 1979 (United Nations Economic Commission for Europe). Available at http://www.unece.org/env/lrtap/ [Verified 8 January 2013].

[5]  A. Dvorská, K. Komprdová, G. Lammel, J. Klánová, H. Plachá, Polycyclic aromatic hydrocarbons in background air in central Europe – Seasonal levels and limitations for source apportionment. Atmos. Environ. 2012, 46, 147.
Polycyclic aromatic hydrocarbons in background air in central Europe – Seasonal levels and limitations for source apportionment.Crossref | GoogleScholarGoogle Scholar |

[6]  S. Adu-Kumi, R. Kareš, J. Literák, J. Borůvková, P. O. Yeboah, D. Carboo, O. Akoto, G. Darko, S. Osae, J. Klánová, Levels and seasonal variations of organochlorine pesticides in urban and rural background air of southern Ghana. Environ. Sci. Pollut. R. 2012, 19, 1963.
Levels and seasonal variations of organochlorine pesticides in urban and rural background air of southern Ghana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVShsLnN&md5=a4404e2262b513fb524f025047cc0140CAS |

[7]  J. Wu, M. Teng, L. Gao, M. Zheng, Background air levels of polychlorinated biphenyls in China. Sci. Total Environ. 2011, 409, 1818.
Background air levels of polychlorinated biphenyls in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFSmtLk%3D&md5=590b5c7518e170d843481ef6886c0e9aCAS |

[8]  S. Ubl, M. Scheringer, A. Stohl, J. F. Burkhart, K. Hungerbühler, Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic. Atmos. Environ. 2012, 62, 391.
Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFersbnK&md5=c137dae3551739fb85ffa45463e926deCAS |

[9]  B. L. van Drooge, P. Fernández, J. O. Grimalt, E. Stuchlík, C. J. Torres García, E. Cuevas, Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer. Environ. Sci. Pollut. R. 2010, 17, 1207.
Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer.Crossref | GoogleScholarGoogle Scholar |

[10]  S. Eckhardt, K. Breivik, S. Manø, A. Stohl, Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions. Atmos. Chem. Phys. 2007, 7, 4527.
Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yqu7jF&md5=8d25f302b998e0655950b83e06cac76bCAS |

[11]  U. M. Sofowote, H. Hung, A. K. Rastogi, J. N. Westgate, P. F. Deluca, Y. Su, B. E. McCarry, Assessing the long-range transport of PAH to a sub-Arctic site using positive matrix factorization and potential source contribution function. Atmos. Environ. 2011, 45, 967.
Assessing the long-range transport of PAH to a sub-Arctic site using positive matrix factorization and potential source contribution function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyisQ%3D%3D&md5=8878ff45f4cf1cd97cdb7c4149276c8aCAS |

[12]  M. Oehme, B. Ottar, The long range transport of polychlorinated hydrocarbons to the Arctic. Geophys. Res. Lett. 1984, 11, 1133.
The long range transport of polychlorinated hydrocarbons to the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXotlKjtA%3D%3D&md5=0cab6aad4861b96d2ddbfc5cb51aa679CAS |

[13]  R. M. Hoff, K.-W. Chan, Atmospheric concentrations of chlordane at Mould Bay, N.W.T., Canada. Chemosphere 1986, 15, 449.
Atmospheric concentrations of chlordane at Mould Bay, N.W.T., Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1yquro%3D&md5=26e112bd1b0ed7a1e8e0a4b4e7bcfa89CAS |

[14]  G. W. Patton, D. A. Hinckley, M. D. Walla, T. F. Bidleman, B. T. Hargrave, Airborne organochlorines in the Canadian High Arctic. Tellus B Chem. Phys. Meterol. 1989, 41, 243.
Airborne organochlorines in the Canadian High Arctic.Crossref | GoogleScholarGoogle Scholar |

[15]  P. Fellin, D. Dougherty, L. A. Barrie, D. Toom, D. Muir, N. Grift, L. Lockhart, B. Billeck, Air monitoring in the arctic: Results for selected persistent organic pollutants for 1992. Environ. Toxicol. Chem. 1996, 15, 253.
Air monitoring in the arctic: Results for selected persistent organic pollutants for 1992.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht12ksL4%3D&md5=c439988f9274dec5d67674f2f00e6c70CAS |

[16]  W. C. Malm, C. E. Johnson, J. F. Bresch, Application of principle component analysis for purposes of identifying source-receptor relationships, in Transactions: Receptor Methods for Source Apportionment – Real World Issues and Applications, March 1985, Williamsburg, VA (Ed. T. G. Pace) 1985, pp. 127–137 (Air Pollution Control Association: Williamsburg, VA).

[17]  Y. Zeng, P. K. Hopke, A study of the sources of acid precipitation in Ontario, Canada. Atmos. Environ. 1989, 23, 1499.
A study of the sources of acid precipitation in Ontario, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFyltbY%3D&md5=bd0197fe371f5dfe1416f52f4349bd41CAS |

[18]  L. L. Ashbaugh, W. C. Malm, W. Z. Sadeh, A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos. Environ. 1985, 19, 1263.
A residence time probability analysis of sulfur concentrations at Grand Canyon National Park.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitlGnsA%3D%3D&md5=903e4886b931d246c5098769bdf206b2CAS |

[19]  Y. K. Hsu, T. M. Holsen, P. K. Hopke, Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545.
Comparison of hybrid receptor models to locate PCB sources in Chicago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisF2ktg%3D%3D&md5=5e3e64eaf7e9dce14a6d11851f9900b1CAS |

[20]  M. Oehme, Further evidence for long-range air transport of polychlorinated aromates and pesticides – North America and Eurasia to the Arctic. Ambio 1991, 20, 293.

[21]  T. Meyer, D. C. G. Muir, C. Teixeira, X. Wang, T. Young, F. Wania, Deposition of brominated flame retardants to the Devon Ice Cap, Nunavut, Canada. Environ. Sci. Technol. 2012, 46, 826.
Deposition of brominated flame retardants to the Devon Ice Cap, Nunavut, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygt7jF&md5=ef37506aa855bb06790c16efec73c1d8CAS |

[22]  P. Kukučka, G. Lammel, A. Dvorská, J. Klánová, A. Möller, E. Fries, Contamination of Antarctic snow by polycyclic aromatic hydrocarbons dominated by combustion sources in the polar region. Environ. Chem. 2010, 7, 504.
Contamination of Antarctic snow by polycyclic aromatic hydrocarbons dominated by combustion sources in the polar region.Crossref | GoogleScholarGoogle Scholar |

[23]  W. D. Hafner, R. A. Hites, Potential sources of pesticides, PCBs, and PAHs to the atmosphere of the Great Lakes. Environ. Sci. Technol. 2003, 37, 3764.
Potential sources of pesticides, PCBs, and PAHs to the atmosphere of the Great Lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslegur8%3D&md5=54fe007f8566b1d153ff4a75fe50e486CAS |

[24]  E. Hoh, R. A. Hites, Sources of toxaphene and other organochlorine pesticides in North America as determined by air measurements and potential source contribution function analyses. Environ. Sci. Technol. 2004, 38, 4187.
Sources of toxaphene and other organochlorine pesticides in North America as determined by air measurements and potential source contribution function analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1aktro%3D&md5=2f28d4394426b6f5567a38056c27bb2bCAS |

[25]  E. Hoh, R. A. Hites, Brominated flame retardants in the atmosphere of the east-central United States. Environ. Sci. Technol. 2005, 39, 7794.
Brominated flame retardants in the atmosphere of the east-central United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSksLnF&md5=677214133bc780994772aad05525195cCAS |

[26]  W. D. Hafner, R. A. Hites, Effects of wind and air trajectory directions on atmospheric concentrations of persistent organic pollutants near the Great Lakes. Environ. Sci. Technol. 2005, 39, 7817.
Effects of wind and air trajectory directions on atmospheric concentrations of persistent organic pollutants near the Great Lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFChsr4%3D&md5=05362cb01d2b3be623274fcd22637e20CAS |

[27]  S. Eckhardt, K. Breivik, Y. F. Li, S. Manø, A. Stohl, Source regions of some persistent organic pollutants measured in the atmosphere at Birkenes, Norway. Atmos. Chem. Phys. 2009, 9, 6597.
Source regions of some persistent organic pollutants measured in the atmosphere at Birkenes, Norway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWisbrJ&md5=e6dd3a7f072e652c11dc9f49991d079dCAS |

[28]  Z. L. Fleming, P. S. Monks, A. J. Manning, Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res. 2012, 104–105, 1.
Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition.Crossref | GoogleScholarGoogle Scholar |

[29]  Y. J. Han, T. M. Holsen, P. K. Hopke, S. M. Yi, Comparison between back-trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury. Environ. Sci. Technol. 2005, 39, 1715.
Comparison between back-trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFaitQ%3D%3D&md5=59ceed3a42da7611f20791d8b32d56faCAS |

[30]  Population and dwelling counts, for Canada, provinces and territories, 2011 and 2006 censuses 2012 (Statistics Canada). Available at http://www12.statcan.ca/census-recensement/2011/dp-pd/hlt-fst/pd-pl/Table-Tableau.cfm?LANG=Eng&T=101&S=50&O=A [Verified 20 March 2012].

[31]  S. D. Choi, C. Shunthirasingham, G. L. Daly, H. Xiao, Y. D. Lei, F. Wania, Levels of polycyclic aromatic hydrocarbons in Canadian mountain air and soil are controlled by proximity to roads. Environ. Pollut. 2009, 157, 3199.
Levels of polycyclic aromatic hydrocarbons in Canadian mountain air and soil are controlled by proximity to roads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrurnJ&md5=01de09d543c4c1ef79f3b7536156b997CAS |

[32]  P. Barthel, S. Thüns, C. Shunthirasingham, J. N. Westgate, F. Wania, M. Radke, Application of XAD-resin based passive air samplers to assess local (roadside) and regional patterns of persistent organic pollutants. Environ. Pollut. 2012, 166, 218.
Application of XAD-resin based passive air samplers to assess local (roadside) and regional patterns of persistent organic pollutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12gurs%3D&md5=b82772541ea1368302094d81e6816fbbCAS |

[33]  Y. Su, H. Hung, P. Blanchard, G. W. Patton, R. Kallenborn, A. Konoplev, P. Fellin, H. Li, C. Geen, G. Stern, B. Rosenberg, L. A. Barrie, Spatial and seasonal variations of hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere. Environ. Sci. Technol. 2006, 40, 6601.
Spatial and seasonal variations of hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFSmu74%3D&md5=2a845b6c30f244efbafd5cc5ebb9c798CAS |

[34]  R. Bailey, L. A. Barrie, C. J. Halsall, P. Fellin, D. C. G. Muir, Atmospheric organochlorine pesticides in the western Canadian Arctic: evidence of transpacific transport. J. Geophys. Res. 2000, 105, 11805.
Atmospheric organochlorine pesticides in the western Canadian Arctic: evidence of transpacific transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVegurY%3D&md5=64d13206dc07112d8bd2863e004f4680CAS |

[35]  U. M. Sofowote, H. Hung, A. K. Rastogi, J. N. Westgate, Y. Su, E. Sverko, I. D’Sa, P. Roach, P. Fellin, B. E. McCarry, The gas/particle partitioning of polycyclic aromatic hydrocarbons collected at a sub-Arctic site in Canada. Atmos. Environ. 2010, 44, 4919.
The gas/particle partitioning of polycyclic aromatic hydrocarbons collected at a sub-Arctic site in Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlahs7zP&md5=a4068807fbd99940f620341af69c3986CAS |

[36]  J. N. Westgate, F. Wania, On the construction, comparison, and variability of airsheds for interpreting semivolatile organic compounds in passively sampled air. Environ. Sci. Technol. 2011, 45, 8850.
On the construction, comparison, and variability of airsheds for interpreting semivolatile organic compounds in passively sampled air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFylu73P&md5=d7bbac49c117921d47ffb723a3324e24CAS |

[37]  P. Seibert, H. Kromp-Kolb, U. Baltensperger, D. T. Jost, M. Schwikowski, A. Kasper, H. Puxbaum, Trajectory analysis of aerosol measurements at high alpine sites – a contribution to subproject ALPTRAC, in EUROTRAC Transport and Transformation of Pollutants in the Troposphere, Proceedings of EUROTRAC Symposium ’94, 11–15 April 1994, Garmisch-Partenkirchen, Germany (Ed. P. M. Borrell) 1994, pp. 689–693 (SPB Academic Publishing: The Hague, the Netherlands).

[38]  A. Lupu, W. Maenhaut, Application and comparison of two statistical trajectory techniques for identification of source regions of atmospheric aerosol species. Atmos. Environ. 2002, 36, 5607.
Application and comparison of two statistical trajectory techniques for identification of source regions of atmospheric aerosol species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlKhsr4%3D&md5=a9d7a9c0592bba7580c71f62d941131cCAS |

[39]  A. Stohl, Trajectory statistics – a new method to establish source–receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579.
Trajectory statistics – a new method to establish source–receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsVGktA%3D%3D&md5=976814cc5dac06010ffea55998194495CAS |

[40]  V. P. Kabashnikov, A. P. Chaikovsky, T. L. Kucsera, N. S. Metelskaya, Estimated accuracy of three common trajectory statistical methods. Atmos. Environ. 2011, 45, 5425.
Estimated accuracy of three common trajectory statistical methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjsbvL&md5=35f7c15c400efbf0239894da4da6ce44CAS |

[41]  R. Wu, S. Backus, I. Basu, P. Blanchard, K. Brice, H. Dryfhout-Clark, P. Fowlie, M. Hulting, R. Hites, Findings from quality assurance activities in the Integrated Atmospheric Deposition Network. J. Environ. Monit. 2009, 11, 277.
Findings from quality assurance activities in the Integrated Atmospheric Deposition Network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1CmsbY%3D&md5=ebba8b1fbb4990ac2763674f1d4d0147CAS |

[42]  Y. Su, H. Hung, P. Blanchard, G. W. Patton, R. Kallenborn, A. Konoplev, P. Fellin, H. Li, C. Geen, G. Stern, A circumpolar perspective of atmospheric organochlorine pesticides (OCPs): results from six Arctic monitoring stations in 2000–2003. Atmos. Environ. 2008, 42, 4682.
A circumpolar perspective of atmospheric organochlorine pesticides (OCPs): results from six Arctic monitoring stations in 2000–2003.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFGgs7w%3D&md5=ef6663aa23a38c31342a0cd9319dbaffCAS |

[43]  M.-D. Cheng, C.-J. Lin, Receptor modeling for smoke of 1998 biomass burning in Central America. J. Geophys. Res. 2001, 106, 22 871.
Receptor modeling for smoke of 1998 biomass burning in Central America.Crossref | GoogleScholarGoogle Scholar |

[44]  L. M. Jantunen, T. Bidleman, Air–water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCH in arctic regions. J. Geophys. Res. 1996, 101, 28 837.
Air–water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCH in arctic regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVWqtrw%3D&md5=9c887a52fa52bfb42e36373d8e721749CAS |

[45]  B. T. Hargrave, L. A. Barrie, T. F. Bidleman, H. E. Welch, Seasonality in exchange of organochlorines between Arctic air and seawater. Environ. Sci. Technol. 1997, 31, 3258.
Seasonality in exchange of organochlorines between Arctic air and seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1eks7g%3D&md5=8cc3471d6c50ad2293524eb830c80fc0CAS |

[46]  L. M. Jantunen, P. A. Helm, H. Kylin, T. F. Bidleman, Hexachlorocyclohexanes (HCHs) in the Canadian Archipelago. 2. Air–water gas exchange of α- and γ-HCH. Environ. Sci. Technol. 2008, 42, 465.
Hexachlorocyclohexanes (HCHs) in the Canadian Archipelago. 2. Air–water gas exchange of α- and γ-HCH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVamsbvN&md5=1456203b71dcf41ac8803e2df3e28755CAS |

[47]  F. Wong, L. M. Jantunen, M. Pućko, T. Papakyriakou, R. M. Staebler, G. A. Stern, T. F. Bidleman, Air–water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic. Environ. Sci. Technol. 2011, 45, 876.
Air–water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCg&md5=228b82f1bac169c19721b37d35dc89ecCAS |

[48]  L. M. Jantunen, T. F. Bidleman, Henry’s law constants for hexachlorobenzene, p,p′-DDE and components of technical chlordane and estimates of gas exchange for Lake Ontario. Chemosphere 2006, 62, 1689.
Henry’s law constants for hexachlorobenzene, p,p′-DDE and components of technical chlordane and estimates of gas exchange for Lake Ontario.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVKjs7c%3D&md5=fd68697ff58ca5128d3b209b1dd9921aCAS |

[49]  G. Zhang, J. Li, H. Cheng, X. Li, W. Xu, K. C. Jones, Distribution of organochlorine pesticides in the northern South China Sea: implications for land outflow and air–sea exchange. Environ. Sci. Technol. 2007, 41, 3884.
Distribution of organochlorine pesticides in the northern South China Sea: implications for land outflow and air–sea exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVCltLc%3D&md5=7343d1fa0933687c1e1d86281f2c69baCAS |

[50]  T. Ramdahl, Retene – a molecular marker of wood combustion in ambient air. Nature 1983, 306, 580.
Retene – a molecular marker of wood combustion in ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXjvVyksw%3D%3D&md5=f83148c6e327328668b4ff7b5960d59fCAS |