Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

β-Substituting alanine synthases: roles in cysteine metabolism and abiotic and biotic stress signalling in plants

Jibran Tahir A and Paul Dijkwel A B
+ Author Affiliations
- Author Affiliations

A Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.

B Corresponding author. Email: p.dijkwel@massey.ac.nz

Functional Plant Biology 43(4) 307-323 https://doi.org/10.1071/FP15272
Submitted: 4 September 2015  Accepted: 10 December 2015   Published: 16 February 2016

Abstract

Cysteine is required for the synthesis of proteins and metabolites, and is therefore an indispensable compound for growth and development. The β-substituting alanine synthase (BSAS) gene family encodes enzymes known as O-acetylserine thiol lyases (OASTLs), which carry out cysteine biosynthesis in plants. The functions of the BSAS isoforms have been reported to be crucial in assimilation of S and cysteine biosynthesis, and homeostasis in plants. In this review we explore the functional variation in this classic pyridoxal-phosphate-dependent enzyme family of BSAS isoforms. We discuss how specialisation and divergence in BSAS catalytic activities makes a more dynamic set of biological routers that integrate cysteine metabolism and abiotic and biotic stress signalling in Arabidopsis thaliana (L.) Heynh. and also other species. Our review presents a universal scenario in which enzymes modulating cysteine metabolism promote survival and fitness of the species by counteracting internal and external stress factors.

Additional keywords: Arabidopsis thaliana, cyanide detoxification, isoforms, O-acetyl thiol lyase, sulfur assimilation.


References

Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. Journal of Proteome Research 8, 3222–3238.
Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1entro%3D&md5=d5618d80942963725af3215c940d8ef2CAS | 19415921PubMed |

Alvarez C, Calo L, Romero LC, Garcia I, Gotor C (2010) An O-acetylserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiology 152, 656–669.
An O-acetylserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFegtrY%3D&md5=46e9fa1f8b38f9e65222bbd623392747CAS | 19955263PubMed |

Alvarez C, Lozano-Juste J, Romero LC, Garcia I, Gotor C, Leon J (2011) Inhibition of Arabidopsis O-acetylserine(thiol)lyase A1 by tyrosine nitration. The Journal of Biological Chemistry 286, 578–586.
Inhibition of Arabidopsis O-acetylserine(thiol)lyase A1 by tyrosine nitration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVei&md5=ec23dfebc3d5ef6400c265adb2b147c7CAS | 21047785PubMed |

Alvarez C, García I, Romero LC, Gotor C (2012a) Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana. Molecular Plant 5, 1217–1226.
Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKntrrM&md5=8394d97f038f8253a5b3274fa0a7b362CAS | 22511607PubMed |

Alvarez C, Garcia I, Moreo I, Perez-Perez ME, Crespo JL, Romero LC, Gotor C (2012b) Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. The Plant Cell 24, 4621–4634.
Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVKltQ%3D%3D&md5=61bc7fb2b3548f19f48772c927a3b54eCAS | 23144183PubMed |

Alvarez C, Bermudez MA, Romero LC, Gotor C, Garcia I (2012c) Cysteine homeostasis plays an essential role in plant immunity. New Phytologist 193, 165–177.
Cysteine homeostasis plays an essential role in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVKgt78%3D&md5=953ee023d816dc8b99f678ee6e47e55aCAS | 21988475PubMed |

Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell 16, 3460–3479.
Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKrtA%3D%3D&md5=69aa25ee9c210fcb3821f0efb749c886CAS | 15548743PubMed |

Anjum NA, Gill SS, Gill R (2014) Cysteine – jack of all glutathione-based plant stress defense trades. In ‘Plant adaptation to environmental change: significance of amino acids and their derivatives’ (Eds NA Anjum, SS Gill, R Gill) pp. 35–52. (CAB International: Wallingford)

Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Frontiers in Plant Science 6, 210
ATP-sulfurylase, sulfur-compounds, and plant stress tolerance.Crossref | GoogleScholarGoogle Scholar | 25904923PubMed |

Baehrecke EH (2005) Autophagy: dual roles in life and death? Nature Reviews. Molecular Cell Biology 6, 505–510.
Autophagy: dual roles in life and death?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Gmtbc%3D&md5=86a341dac5ae4f2d118fd25ceab88ef6CAS | 15928714PubMed |

Balk J, Pilon M (2011) Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends in Plant Science 16, 218–226.
Ancient and essential: the assembly of iron–sulfur clusters in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKjsL4%3D&md5=d3e1ca910fe569a2a76a031b252ae944CAS | 21257336PubMed |

Barroso C, Romero L, Cejudo F, Vega J, Gotor C (1999) Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Molecular Biology 40, 729–736.
Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvV2rt7o%3D&md5=89352802a89ff315080565878526df03CAS | 10480396PubMed |

Bashir H, Ahmad J, Bagheri R, Nauman M, Qureshi MI (2013) Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environmental and Experimental Botany 94, 19–32.
Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1aqs7vF&md5=d11887a8d43e54e9b601f44177623493CAS |

Bassham D-C (2007) Plant autophagy – more than a starvation response. Current Opinion in Plant Biology 10, 587–593.
Plant autophagy – more than a starvation response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymu73K&md5=3c0b0faa95ad8cc339ef1aad659161d5CAS | 17702643PubMed |

Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101–106.
A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVSj&md5=9868fabe3ff0e0bc92e1292e49221bb1CAS | 19095900PubMed |

Berkowitz O, Wirtz M, Wolf A, Kuhlmann J, Hell R (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. The Journal of Biological Chemistry 277, 30629–30634.
Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFyqt7g%3D&md5=7faddecf3533034a2c0d0698cda0aeaeCAS | 12063244PubMed |

Bermúdez MA, Páez-Ochoa MA, Gotor C, Romero LC (2010) Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. The Plant Cell 22, 403–416.
Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control.Crossref | GoogleScholarGoogle Scholar | 20179139PubMed |

Bermúdez MA, Galmés J, Moreo I, Mullieaux PM, Gotor C, Romero LC (2012) Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid. Plant Physiology 160, 274–288.
Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid.Crossref | GoogleScholarGoogle Scholar | 22829322PubMed |

Birke H, Haas FH, De Kok LJ, Balk J, Wirtz M, Hell R (2012) Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana. The Biochemical Journal 445, 275–283.
Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptl2hs7Y%3D&md5=0aab32f3ef3d0da22c09281b86eb23a7CAS | 22551219PubMed |

Birke H, Heeg C, Wirtz M, Hell R (2013) Successful fertilization requires the presence of at least one major O-acetylserine(thiol)lyase for cysteine synthesis in pollen of Arabidopsis. Plant Physiology 163, 959–972.
Successful fertilization requires the presence of at least one major O-acetylserine(thiol)lyase for cysteine synthesis in pollen of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OjsLvK&md5=5489fe47a75f6c8004df2deccbf35a50CAS | 24001608PubMed |

Birke H, De Kok LJ, Wirtz M, Hell R (2015) The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis. Plant & Cell Physiology 56, 358–367.
The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Blaszczyk A, Brodzik R, Sirko A (1999) Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase. The Plant Journal 20, 237–243.
Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFait7c%3D&md5=1aeb42b88888a654a35a7521c25eb889CAS | 10571883PubMed |

Bloem E, Haneklaus S, Salac I, Wickenhäuser P, Schnug E (2007) Facts and fiction about sulfur metabolism in relation to plant–pathogen interactions. Plant Biology 9, 596–607.
Facts and fiction about sulfur metabolism in relation to plant–pathogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlelsrrP&md5=7017ed332ffd81d8277c7c6a662632baCAS | 17853360PubMed |

Bloem E, Haneklaus S, Schnug E (2014) Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Frontiers in Plant Science 5, 779

Bogdanova N, Hell R (1997) Cysteine synthesis in plants: Protein– protein interactions of serine acetyltransferase from Arabidopsis thaliana. The Plant Journal 11, 251–262.
Cysteine synthesis in plants: Protein– protein interactions of serine acetyltransferase from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFCktbw%3D&md5=69cf724bfd1ecfff07a16f4824f0a2b0CAS | 9076992PubMed |

Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. The Journal of Biological Chemistry 280, 38803–38813.
Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SktLnJ&md5=4ba679e6e836f979957def69ab4b3dc4CAS | 16166087PubMed |

Bottcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. The Plant Cell 21, 1830–1845.
The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 19567706PubMed |

Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nature Cell Biology 15, 713–720.
Emerging regulation and functions of autophagy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVehurzO&md5=834a1e3f74de950ff83f7b0bde5d72e1CAS | 23817233PubMed |

Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN (1998) Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. Journal of Molecular Biology 283, 121–133.
Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOkurk%3D&md5=0b954af06cce554940c800c525f62f55CAS | 9761678PubMed |

Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B, Bettati S, Mozzarelli A (2005) Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Science 14, 2115–2124.
Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVejt7o%3D&md5=3b0ea31b4336a53446ca2a6ad5ec67d1CAS | 15987896PubMed |

Campanini B, Benoni R, Bettati S, Beck CM, Hayes CS, Mozzarelli A (2015) Moonlighting O-acetylserine sulfhydrylase: new functions for an old protein. Biochimica et Biophysica Acta 1854, 1184–1193.
Moonlighting O-acetylserine sulfhydrylase: new functions for an old protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvVGgtrY%3D&md5=dbb851895d3ae12ad5597c460b5af094CAS | 25731080PubMed |

Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132, 449–462.
Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVahurg%3D&md5=124da6680c860e23cba7c6ca44c26651CAS | 18267075PubMed |

Carfagna S, Salbitani G, Vona V, Esposito S (2011) Changes in cysteine and O-acetyl-l-serine levels in the microalga Chlorella sorokiniana in response to the S-nutritional status. Journal of Plant Physiology 168, 2188–2195.
Changes in cysteine and O-acetyl-l-serine levels in the microalga Chlorella sorokiniana in response to the S-nutritional status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2itbrJ&md5=d8b92ccbaca633f1cbec634cdcd617e5CAS | 21920629PubMed |

Chung MC, Chou SJ, Kuang LY, Charng YY, Yang SF (2002) Subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase in apple fruit. Plant & Cell Physiology 43, 549–554.
Subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase in apple fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFWgt7k%3D&md5=5608f89cfaf22bbf0ebd4fd647fd8608CAS |

Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323, 95–101.
Glucosinolate metabolites required for an Arabidopsis innate immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVSi&md5=467193fb69006633ea1e9184113b0c10CAS | 19095898PubMed |

Corpas FJ, del Río LA, Barroso JB (2007) Need of biomarkers of nitrosative stress in plants. Trends in Plant Science 12, 436–438.
Need of biomarkers of nitrosative stress in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWgsLvO&md5=6c330818cf32f8fdcec33824d54bf45eCAS | 17826297PubMed |

Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. The Plant Cell 19, 2225–2245.
MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtValurzO&md5=494d093f672ee0ebd8d5f95d18e55753CAS | 17616737PubMed |

Domínguez-Solís JR, Gutirrez-Alcalá G, Romero LC, Gotor C (2001) The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. The Journal of Biological Chemistry 276, 9297–9302.
The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance.Crossref | GoogleScholarGoogle Scholar | 11121418PubMed |

Domínguez-Solís JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnology Journal 2, 469–476.
Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 17147619PubMed |

Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants – structural and kinetic properties of the free and bound enzymes. European Journal of Biochemistry 255, 235–245.
Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants – structural and kinetic properties of the free and bound enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFahsr4%3D&md5=c8025e41a6f81c71641fbaad6a3054b4CAS | 9692924PubMed |

Dubreuil-Maurizi C, Poinssot B (2012) Role of glutathione in plant signaling under biotic stress. Plant Signaling & Behavior 7, 210–212.
Role of glutathione in plant signaling under biotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2isLrI&md5=d671571173fe238b301ee69e1cf7f643CAS |

El-Mashad AA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249, 625–635.
Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1yjsro%3D&md5=ba0e742125aa7322395e56644e26a562CAS | 21732069PubMed |

Farmer EE (2014). Chemical defenses. In ‘Leaf defence’. (Ed. EE Farmer) pp. 75–104. (Oxford University Press, Oxford, UK).

Fediuc E, Lips SH, Erdei L (2005) O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. Journal of Plant Physiology 162, 865–872.
O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqtbzE&md5=ce5f17a956524850420b9d80e672b004CAS | 16146312PubMed |

Feldman-Salit A, Wirtz M, Hell R, Wade RC (2009) A mechanistic model of the cysteine synthase complex. Journal of Molecular Biology 386, 37–59.
A mechanistic model of the cysteine synthase complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSmt7s%3D&md5=c8108ee39c4b9e839bc7ceff999a4c9dCAS | 18801369PubMed |

Feldman-Salit A, Wirtz M, Lenherr ED, Throm C, Hothorn M, Scheffzek K, Hell R, Wade RC (2012) Allosterically gated enzyme dynamics in the cysteine synthase complex regulate cysteine biosynthesis in Arabidopsis thaliana. Structure (London, England) 20, 292–302.
Allosterically gated enzyme dynamics in the cysteine synthase complex regulate cysteine biosynthesis in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFGlt78%3D&md5=e1ed08bb6dafd6c5d083e6f38c35ce8bCAS |

Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. The Plant Cell 18, 3647–3655.
Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVKru7Y%3D&md5=d86b095bc1fac8b1bd5972982ec9fcb3CAS | 17194764PubMed |

Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiology 137, 1082–1091.
Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislOqs7w%3D&md5=cbb1b5a6fac7b54e93c8a334f1167be0CAS | 15734913PubMed |

Fuentes DE, Fuentes EL, Castro ME, Perez JM, Araya MA, Chasteen TG, Pichuantes SE, Vasquez CC (2007) Cysteine metabolism-related genes and bacterial resistance to potassium tellurite. Journal of Bacteriology 189, 8953–8960.
Cysteine metabolism-related genes and bacterial resistance to potassium tellurite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtV0%3D&md5=6d8f68560c870d1efab6a830041bbed0CAS | 17951385PubMed |

Garcia I, Castellano JM, Vioque B, Solano R, Gotor C, Romero LC (2010) Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. The Plant Cell 22, 3268–3279.
Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2msrbF&md5=83c4515810f5bc418a7975c1637044f7CAS | 20935247PubMed |

Garcia I, Rosas T, Bejarano ER, Gotor C, Romero LC (2013) Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response. Plant Physiology 162, 2015–2027.
Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWlt7rL&md5=dec343d0e748627f94502cfdf234b447CAS | 23784464PubMed |

García I, Gotor C, Romero LC (2014) Beyond toxicity: a regulatory role for mitochondrial cyanide. Plant Signaling & Behavior 9, e27612
Beyond toxicity: a regulatory role for mitochondrial cyanide.Crossref | GoogleScholarGoogle Scholar |

García-Mata C, Lamattina L (2013) Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Science 201–202, 66–73.
Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange.Crossref | GoogleScholarGoogle Scholar | 23352403PubMed |

Genisel M, Erdal S, Kizilkaya M (2015) The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regulation 75, 187–197.
The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVKmsrc%3D&md5=f55256c69588b343dcd22f7921316ab0CAS |

Ghezzi P (2011) Role of glutathione in immunity and inflammation in the lung. International Journal of General Medicine 4, 105–113.
Role of glutathione in immunity and inflammation in the lung.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslalsLc%3D&md5=d1ed0e3875291312b9a3492b02d47a52CAS | 21403800PubMed |

Gleadow RM, Woodrow IE (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. Journal of Chemical Ecology 28, 1301–1313.
Constraints on effectiveness of cyanogenic glycosides in herbivore defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVGmsbs%3D&md5=19f8033d915575f4c3b2fd517b636eadCAS | 12199497PubMed |

Gotor C, Garcia I, Crespo JL, Romero LC (2013) Sulfide as a signaling molecule in autophagy. Autophagy 9, 609–611.
Sulfide as a signaling molecule in autophagy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFOmsbk%3D&md5=a753b5c4975e297d6b8dad3e42e1d365CAS | 23328265PubMed |

Gotor C, Laureano-Marin AM, Moreno I, Aroca A, García I, Romero LC (2014) Signaling in the plant cytosol: cysteine or sulfide? Amino Acids 47, 2155–2164.
Signaling in the plant cytosol: cysteine or sulfide?Crossref | GoogleScholarGoogle Scholar | 24990521PubMed |

Grimble RF (2006) The effects of sulfur amino acid intake on immune function in humans. The Journal of Nutrition 136, 1660S–1665S.

Guo R, Shen W, Qian H, Zhang M, Liu L, Wang Q (2013) Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. Journal of Experimental Botany 64, 5707–5719.
Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlCn&md5=a70a54e6cb952699bab48d66339dcb62CAS | 24151308PubMed |

Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiology 148, 1055–1067.
Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtLjK&md5=070421144153aa20a510f75d500fbac9CAS | 18753283PubMed |

Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Journal of Plant Physiology 158, 655–661.
Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Git74%3D&md5=b00d528b3b98c0fc1253eade38996d9eCAS |

Harms K, von Ballmoos P, Brunold C, Hofgen R, Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. The Plant Journal 22, 335–343.
Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFSksbc%3D&md5=6e2b5d892c2ca10b7669700a0a76a6b5CAS | 10849350PubMed |

Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiology 123, 1163–1172.
β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1SltL8%3D&md5=375991a9fcdafc8b5c065df270fe50abCAS | 10889265PubMed |

Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. The Plant Cell 20, 168–185.
Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCgtLg%3D&md5=6cf61266efb31033b5490b5be71e6cb9CAS | 18223034PubMed |

Hell R (2003) Metabolic regulation of cysteine synthesis and sulphur assimilation. In ‘Sulfur transport and assimilation in plants’. (Eds JC Davidian, et al.) pp. 21–31. (Backhuys Publishers: Leiden)

Hell R, Wirtz M (2008) Metabolism of cysteine in plants and phototrophic bacteria. In ‘Sulfur metabolism in phototrophic organisms’. (Eds R Hell, C Dahl, D Knaff, T Leustek) pp. 59–91. (Springer: Dordrecht, The Netherlands)

Hell R, Wirtz M (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. The Arabidopsis Book 9, e0154
Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 22303278PubMed |

Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22, 245–257.
Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFOmu70%3D&md5=6aa13dd2dd52068dbe372d4dfd3face9CAS | 12083068PubMed |

Hernàndez-Sebastiá C, Varin L, Marsolais F (2008). Sulfotransferases from plants, algae and phototrophic bacteria. In ‘Sulfur metabolism in phototrophic organisms’ (Eds R Hell, C Dahl, D Knaff, T Leustek) pp. 111–130. (Springer: Dordrecht, The Netherlands)

Holdorf MM, Owen HA, Lieber SR, Yuan L, Adams N, Dabney-Smith C, Makaroff CA (2012) Arabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development. Plant Physiology 160, 226–236.
Arabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOmtLzM&md5=c2dfac4828522a6e31c025a75e583ea0CAS | 22786886PubMed |

Honda K, Yamada N, Yoshida R, Ihara H, Sawa T, Akaike T, Iwai S (2015) 8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. Plant & Cell Physiology 56, 1481–1489.
8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7, 149
Wheat EST resources for functional genomics of abiotic stress.Crossref | GoogleScholarGoogle Scholar | 16772040PubMed |

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Advance Bioinformatics 2008, 420747
Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes.Crossref | GoogleScholarGoogle Scholar |

Hubberten HM, Drozd A, Tran BV, Hesse H, Hoefgen R (2012) Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana. The Plant Journal 72, 625–635.
Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Sht7nJ&md5=a31c7f3fe0e8ec8344975b018e093722CAS | 22775482PubMed |

Hwang CS, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977.
N-terminal acetylation of cellular proteins creates specific degradation signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSjurY%3D&md5=6aece4be2bb38aac9181fb41180ff76aCAS | 20110468PubMed |

Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proceedings of the National Academy of Sciences of the United States of America 111, 7606–7611.
Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlSrt7w%3D&md5=42518ae8f93a76ae37b53cd885b2c0ddCAS | 24733942PubMed |

Jez JM, Dey S (2013) The cysteine regulatory complex from plants and microbes: what was old is new again. Current Opinion in Structural Biology 23, 302–310.
The cysteine regulatory complex from plants and microbes: what was old is new again.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1Kktrg%3D&md5=a632bd86dbbdd8b5378ccd0de33773e3CAS | 23510784PubMed |

Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiology and Biochemistry 62, 41–46.
Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCkurvL&md5=bd316aab6027044f6982dfae87e161c3CAS | 23178483PubMed |

Jones JD, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
The plant immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtbzO&md5=8c3478940ede75d28698c9946ce7d46eCAS | 17108957PubMed |

Jones PR, Manabe T, Awazuhara M, Saito K (2003) A new member of plant CS-lyases. A cystine lyase from Arabidopsis thaliana. The Journal of Biological Chemistry 278, 10291–10296.
A new member of plant CS-lyases. A cystine lyase from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVCrs74%3D&md5=9b524b1185a46a484231fedb64ef20fcCAS | 12525491PubMed |

Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hähnel U, Hänsch R, Hartmann T, Kopriva S, Kruse C, Mendel RR, Papenbrock J, Reichelt M, Rennenberg H, Schnug E, Schmidt A, Textor S, Tokuhisa J, Wachter A, Wirtz M, Rausch T, Hell R (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynthesis Research 86, 491–508.
Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFOn&md5=1bae8a15fec997d4896687305fe28675CAS | 16307302PubMed |

Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. The Plant Cell 22, 1216–1231.
Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsV2is78%3D&md5=9001f81670fb0bd9e9b49d6ae3324bcdCAS | 20424176PubMed |

Kim HS, Fay JC (2007) Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proceedings of the National Academy of Sciences of the United States of America 104, 19387–19391.
Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOisA%3D%3D&md5=eb06352d541b4a889a1621aa5e2a9b81CAS | 18042712PubMed |

Klein M, Papenbrock J (2004) The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. Journal of Experimental Botany 55, 1809–1820.
The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFaisL8%3D&md5=8f41c3851bc6072858431ee49bdd1a1fCAS | 15234990PubMed |

Klug K, Hogekamp C, Specht A, Myint SS, Blöink D, Küster H, Horst WJ (2015) Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense. Physiologia Plantarum 153, 253–268.
Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFCqsL8%3D&md5=6a7f24fbfe1c2774fe072c5f9f97c6bcCAS | 24930426PubMed |

Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y (2009) Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106, 15 067–15 072.
Identification of tyrosylprotein sulfotransferase in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGmsrzK&md5=5f5285eacc1c963f70c4cf77146ea7b1CAS |

Kopriva S (2007) Sulfur metabolism in plants. In ‘Encyclopaedia of life sciences’(Wiley: Hoboken, NJ) Available at http://www.els.net/WileyCDA/ElsArticle/refId-a0020126.html [verified 6 January 2016]

Kopriva S, Mugford S, Matthewman C, Koprivova A (2009) Plant sulfate assimilation genes: redundancy versus specialization. Plant Cell Reports 28, 1769–1780.
Plant sulfate assimilation genes: redundancy versus specialization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValu7nN&md5=5faaf6296663881c5f6b64b33e1a5a1dCAS | 19876632PubMed |

Kopriva S, Mugford SG, Baraniecka P, Lee B-R, Matthewman CA, Koprivova A (2012) Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Frontiers in Plant Science 3, 163
Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 22833750PubMed |

Koprivova A, Kopriva S (2008) Lessons from investigation of regulation of APS reductase by salt stress. Plant Signaling & Behavior 3, 567–569.
Lessons from investigation of regulation of APS reductase by salt stress.Crossref | GoogleScholarGoogle Scholar |

Kredich NM, Becker MA, Tomkins GM (1969) Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. The Journal of Biological Chemistry 244, 2428–2439.

Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant, Cell & Environment 32, 349–367.
Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslKjsLw%3D&md5=db7e36c2a5aa63069ed1cd9604e00cfaCAS |

Kruse C, Jost R, Lipschis M, Kopp B, Hartmann M, Hell R (2007) Sulfur-enhanced defence: effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biology 9, 608–619.
Sulfur-enhanced defence: effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlelsrrI&md5=47eb23550c29e8d859efce6418e4df0eCAS | 17853361PubMed |

Kumaran S, Jez JM (2007) Thermodynamics of the interaction between O-acetylserine sulfhydrylase and the C-terminus of serine acetyltransferase. Biochemistry 46, 5586–5594.
Thermodynamics of the interaction between O-acetylserine sulfhydrylase and the C-terminus of serine acetyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVCmtL8%3D&md5=1194775cab573b6fed45d32c897794cdCAS | 17425333PubMed |

Kumaran S, Yi H, Krishnan HB, Jez JM (2009) Assembly of the cysteine synthase complex and the regulatory role of protein–protein interactions. The Journal of Biological Chemistry 284, 10268–10275.
Assembly of the cysteine synthase complex and the regulatory role of protein–protein interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKktr8%3D&md5=56e1174f096a238890c776852a1f59efCAS | 19213732PubMed |

Kuźniak E, Wielanek M, Chwatko G, Głowacki R, Libik-Konieczny M, Piątek M, Gajewska E, Skłodowska M (2015) Salicylic acid and cysteine contribute to arbutin-induced alleviation of angular leaf spot disease development in cucumber Journal of Plant Physiology 181, 9–13.
Salicylic acid and cysteine contribute to arbutin-induced alleviation of angular leaf spot disease development in cucumberCrossref | GoogleScholarGoogle Scholar |

Laureano-Marín AM, García I, Romero LC, Gotor C (2014) Assessing the transcriptional regulation of l-cysteine desulfhydrase 1 in Arabidopsis thaliana. Frontiers in Plant Science 5, 683
Assessing the transcriptional regulation of l-cysteine desulfhydrase 1 in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 25538717PubMed |

Lee CP, Wirtz M, Hell R (2014) Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana. Plant & Cell Physiology 55, 64–73.
Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFKiuw%3D%3D&md5=bef9a0003c483253b33a48f830473d5fCAS |

Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RAL, Gust AA, Nürnberger T (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. The Plant Journal 66, 818–830.
Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslahtLc%3D&md5=2300019bdadfecdffe7121598562c6d6CAS | 21332848PubMed |

Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annual Review of Plant Physiology and Plant Molecular Biology 51, 141–165.
Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymtro%3D&md5=aa2c9fde03e6dd660bf50d90c51259c3CAS | 15012189PubMed |

Lithgow JK, Hayhurst EJ, Cohen G, Aharonowitz Y, Foster SJ (2004) Role of a cysteine synthase in Staphylococcus aureus. Journal of Bacteriology 186, 1579–1590.
Role of a cysteine synthase in Staphylococcus aureus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlGhsrY%3D&md5=47f71415758df4a2842b4b4a6c4ce1adCAS | 14996787PubMed |

Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annual Review of Plant Biology 63, 215–237.
Autophagy: pathways for self-eating in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1ams7g%3D&md5=b04681433708344b4076a6f08d7de717CAS | 22242963PubMed |

Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567–577.
Autophagy regulates programmed cell death during the plant innate immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslelsLw%3D&md5=041f12109866ee2a18248ad0ca9d5fb0CAS | 15907470PubMed |

Liu J, Hou L, Liu G, Liu X, Wang X (2011) Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. Chinese Science Bulletin 56, 3547–3553.
Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVamtbzN&md5=31cfc21af59efb047f7a49800a3dc613CAS |

Lopez-Martin MC, Becana M, Romero LC, Gotor C (2008) Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiology 147, 562–572.
Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVyhtr4%3D&md5=155ecd5e0562e918731cfdc05d70d6beCAS | 18441224PubMed |

Love AJ, Milner JJ, Sadanandom A (2009) Response to Cacas and Diamond: is the autophagy machinery an executioner of programmed cell death in plants? Trends in Plant Science 14, 300–301.
Response to Cacas and Diamond: is the autophagy machinery an executioner of programmed cell death in plants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Kjs7k%3D&md5=6e36ec41737746ecb410576e78e69697CAS |

Lushchak V (2012) Glutathione homeostasis and functions: potential targets for medical interventions. Journal of Amino Acids 2012, 736837
Glutathione homeostasis and functions: potential targets for medical interventions.Crossref | GoogleScholarGoogle Scholar | 22500213PubMed |

Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39, 211–227.
Autophagy and cellular immune responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCgt7zF&md5=ddb23aea2d86ad3881482e7b753a6e74CAS | 23973220PubMed |

Mathai JC, Missner A, Kügler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proceedings of the National Academy of Sciences of the United States of America 106, 16633–16638.
No facilitator required for membrane transport of hydrogen sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ogs7%2FN&md5=a403b737df92433a72ecb3d3cc2f45f5CAS | 19805349PubMed |

Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiology Reviews 29, 653–671.
Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants.Crossref | GoogleScholarGoogle Scholar | 16102596PubMed |

Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynthesis Research 86, 435–457.
Glutathione homeostasis and redox-regulation by sulfhydryl groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFym&md5=2877c3d4f3455592266e5979b18b7f49CAS | 16315075PubMed |

Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Plant Physiology 65, 1199–1202.
Metabolism of hydrogen cyanide by higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXks1Kisb0%3D&md5=2023b96f253245272cf4edd11484ea90CAS | 16661359PubMed |

Mino K, Hiraoka K, Imamura K, Sakiyama T, Eisaki N, Matsuyama A, Nakanishi K (2000) Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus. Bioscience, Biotechnology, and Biochemistry 64, 1874–1880.
Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1artLo%3D&md5=4d330d57dc4f760e56031c894a3413acCAS | 11055390PubMed |

Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. The Plant Cell 23, 2809–2820.
Transcription dynamics in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSqsL%2FO&md5=07e7f137b7bb46fea307e17ad84414a8CAS | 21841124PubMed |

Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flugge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S (2009) Disruption of adenosine-5ʹ-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. The Plant Cell 21, 910–927.
Disruption of adenosine-5ʹ-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylurs%3D&md5=e94bcad6239956aca999e7327bfa4d76CAS | 19304933PubMed |

Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell & Environment 35, 454–484.
Glutathione in plants: an integrated overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVKnt7w%3D&md5=d1d5434b162375de14c5326e753709ffCAS |

Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. The Journal of Biological Chemistry 273, 32739–32745.
Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFOnur8%3D&md5=68e55bbc496e880d4133f527a3ca91dbCAS | 9830017PubMed |

Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiology 126, 973–980.
Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVartb0%3D&md5=b7ef3d56c8510b019090188c4e5555daCAS | 11457948PubMed |

North KA, Kopriva S (2007) Sulfur in resistance to environmental stresses. In ‘Sulfur in plants – an ecological perspective’ (Eds MJ Hawkesford, LJ De Kok) pp. 143–168 (Springer: Dordrecht, The Netherlands).

Ottosson LG, Logg K, Ibstedt S, Sunnerhagen P, Käll M, Blomberg A, Warringer J (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryotic Cell 9, 1635–1647.
Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSntr%2FM&md5=56ba396576bacebb98ea5a36adbc287fCAS | 20675578PubMed |

Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol) lyase under metal stress. Plant Biology 9, 672–681.
Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol) lyase under metal stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlelsrvM&md5=8b3ba0049b2a84814149b9919d7bec1aCAS | 17853367PubMed |

Papanatsiou M, Scuffi D, Blatt MR, Garcia-Mata C (2015) Hydrogen sulfide regulates inward-rectifying K+ channels in conjunction with stomatal closure. Plant Physiology 168, 29–35.
Hydrogen sulfide regulates inward-rectifying K+ channels in conjunction with stomatal closure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFSitrw%3D&md5=5b04d1deffc9d27d1f32af38cec7dcb7CAS | 25770153PubMed |

Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. The Plant Journal 49, 159–172.
Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVyqug%3D%3D&md5=bd0cab28794d9bc3726e0245a4d5ef93CAS | 17144898PubMed |

Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH (2014) Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509, 96–100.
Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlyiur8%3D&md5=8d48fa3403f3058e1a9430d29d40688aCAS | 24670645PubMed |

Peiser GD, Wang TT, Hoffman NE, Yang SF, Liu HW, Walsh CT (1984) Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proceedings of the National Academy of Sciences of the United States of America 81, 3059–3063.
Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlGqu7o%3D&md5=84f330a8c5505fb501b48f64596a9333CAS | 16593463PubMed |

Pesaresi P, Gardner NA, Masiero S, Dietzmann A, Eichacker L, Wickner R, Salamini F, Leister D (2003) Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. The Plant Cell 15, 1817–1832.
Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Wlsb8%3D&md5=51d887c93b5f455e1df6a0e11e9a7502CAS | 12897255PubMed |

Phoenix Bioinformatics (2015) The Arabidopsis information resource (Phoenix Bioinformatics: Redwood City, CA) Available at: www.Arabidopsis.org [Verified 6 January 2016]

Raspanti E, Cacciola SO, Gotor C, Romero LC, Garcia I (2009) Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. Chemosphere 76, 48–54.
Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSitrs%3D&md5=a6f54e01c9c0894cce94abeab71b47c1CAS | 19298998PubMed |

Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends in Plant Science 10, 503–509.
Sulfur metabolism: a versatile platform for launching defence operations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOksbjN&md5=75025b1243d07baf468ef9d787579d96CAS | 16143557PubMed |

Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62, 3321–3338.
Salicylic acid beyond defence: its role in plant growth and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslOmtbc%3D&md5=a04fc14fc97b80cbfbc3eafda38a2d02CAS | 21357767PubMed |

Romero LC, Aroca MA, Laureano-Marin AM, Moreno I, Garcia I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Molecular Plant 7, 264–276.
Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlamtr4%3D&md5=c8f0ea90c1c475a0da7e81a0c119f7f8CAS | 24285094PubMed |

Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annual Review of Plant Biology 59, 143–166.
The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqsL0%3D&md5=423fb664ba53e45dd919292ca5942af7CAS | 18444899PubMed |

Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34, 374–378.

Saito K (2000) Regulation of sulphate transport and synthesis of sulphur-containing amino acids. Current Opinion in Plant Biology 3, 188–195.
Regulation of sulphate transport and synthesis of sulphur-containing amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVOnsr0%3D&md5=30201a72edd9e350533386acf0716bdfCAS | 10837270PubMed |

Saito K, Kurosawa M, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase]. Plant Physiology 106, 887–895.
Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase].Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7isFWhug%3D%3D&md5=256bcea3628cc935f442751c509e3531CAS | 7824657PubMed |

Saito K, Yokoyama H, Noji M, Murakoshi I (1995) Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. The Journal of Biological Chemistry 270, 16321–16326.
Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVGnt7o%3D&md5=27948f8ceee943c67837c1af0409dba1CAS | 7608200PubMed |

Salbitani G, Vona V, Bottone C, Petriccione M, Carfagna S (2015) Sulfur deprivation results in oxidative perturbation in Chlorella sorokiniana (211/8k). Plant & Cell Physiology 56, 897–905.
Sulfur deprivation results in oxidative perturbation in Chlorella sorokiniana (211/8k).Crossref | GoogleScholarGoogle Scholar |

Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annual Review of Plant Biology 54, 629–667.
Functional genomics of P450s.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSns74%3D&md5=575a40134854770fe8b1bf382ea3e762CAS | 14503006PubMed |

Scuffi D, Nunez A, Laspina N, Gotor C, Lamattina L, Garcia-Mata C (2014) Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiology 166, 2065–2076.
Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure.Crossref | GoogleScholarGoogle Scholar | 25266633PubMed |

Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiology 155, 502–514.
Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFagtL8%3D&md5=41085a56a2302dbe5d0b623a0b8f625cCAS | 21075959PubMed |

Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 334, 986–990.
H2S: a universal defense against antibiotics in bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGktL%2FM&md5=2c058420791ea62b409d07ae55999b46CAS | 22096201PubMed |

Shibagaki N, Grossman AR (2010) Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences. The Journal of Biological Chemistry 285, 25094–25102.
Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFemur4%3D&md5=7df7470b39f7ef32ba26be84d2fcac28CAS | 20529854PubMed |

Shin R, Jez JM, Basra A, Zhang B, Schachtman DP (2011) 14–3-3 Proteins fine-tune plant nutrient metabolism. FEBS Letters 585, 143–147.
14–3-3 Proteins fine-tune plant nutrient metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1alsw%3D%3D&md5=17f46c3a373ec302cdc74e1f3cd00ecbCAS | 21094157PubMed |

Sies H (1999) Glutathione and its role in cellular functions. Free Radical Biology & Medicine 27, 916–921.
Glutathione and its role in cellular functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1ymsrw%3D&md5=cfa48bcb41dc74a5b56b784cff906afbCAS |

Sirko A, Blaszczyk A, Liszewska F (2004) Overproduction of SAT and/or OASTL in transgenic plants:a survey of effects. Journal of Experimental Botany 55, 1881–1888.
Overproduction of SAT and/or OASTL in transgenic plants:a survey of effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFaisbs%3D&md5=b7761f0704440218b7d2ceae655daa43CAS | 15208350PubMed |

Speiser A, Haberland S, Watanabe M, Wirtz M, Dietz K-J, Saito K, Hell R (2015) The significance of cysteine synthesis for acclimation to high light conditions. Frontiers in Plant Science 5, 776
The significance of cysteine synthesis for acclimation to high light conditions.Crossref | GoogleScholarGoogle Scholar | 25653656PubMed |

Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Current Opinion in Plant Biology 14, 358–364.
Redox-based protein modifications: the missing link in plant immune signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWmt77O&md5=98c033dba0fa6bfd8cc025b16bce86ccCAS | 21454121PubMed |

Stauber EJ, Kuczka P, van Ohlen M, Vogt B, Janowitz T, Piotrowski M, Beuerle T, Wittstock U (2012) Turning the ‘mustard oil bomb’ into a ‘cyanide bomb’: aromatic glucosinolate metabolism in a specialist insect herbivore. PLoS One 7, e35545
Turning the ‘mustard oil bomb’ into a ‘cyanide bomb’: aromatic glucosinolate metabolism in a specialist insect herbivore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1CnsLc%3D&md5=b23759efb2acfb96f72a2f88936e1996CAS | 22536404PubMed |

Steiner EM, Böth D, Lössl P, Vilaplana F, Schnell R, Schneider G (2014) CysK2 from Mycobacterium tuberculosis is an O-phospho-l-serine dependent S-sulfocysteine synthase. Journal of Bacteriology 196, 3410–3420.
CysK2 from Mycobacterium tuberculosis is an O-phospho-l-serine dependent S-sulfocysteine synthase.Crossref | GoogleScholarGoogle Scholar | 25022854PubMed |

Tahir J, Watanabe M, Jing HC, Hunter D, Tohge T, Nunes-Nesi A, Brotman Y, Fernie AR, Hoefgen R, Dijkwel P (2013) Activation of R-mediated innate immunity and disease susceptibility is affected by different mutations in a cytosolic O-acetylserine (thiol) lyase in Arabidopsis. The Plant Journal 73, 118–130.
Activation of R-mediated innate immunity and disease susceptibility is affected by different mutations in a cytosolic O-acetylserine (thiol) lyase in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVKktbc%3D&md5=218aa1a1ef7a0b5c3296c29109e8be47CAS | 22974487PubMed |

Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology 62, 157–184.
Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslans74%3D&md5=3590079bea4fbd778c3b137ba924836fCAS | 21370978PubMed |

Traverso JA, Pulido A, Rodríguez-García MI, Alché JD (2013) Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives. Frontiers in Plant Science 4, 465
Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives.Crossref | GoogleScholarGoogle Scholar | 24294217PubMed |

Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H, Viti C, Tatti E, Zhang P, Hynes AP, Turner RJ, Zannoni D (2009) Metabolomic investigation of the bacterial response to a metal challenge. Applied and Environmental Microbiology 75, 719–728.
Metabolomic investigation of the bacterial response to a metal challenge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWmurw%3D&md5=7a8a2460aa37238a6cfea6fcb906deebCAS | 19047385PubMed |

Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology 148, 960–968.
Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtLvE&md5=e3c7052e3a2277319d61ab798c0a9c78CAS | 18676660PubMed |

Turner MS, Lo R, Giffard PM (2007) Inhibition of Staphylococcus aureus growth on tellurite-containing media by Lactobacillus reuteri is dependent on CyuC and thiol production. Applied and Environmental Microbiology 73, 1005–1009.
Inhibition of Staphylococcus aureus growth on tellurite-containing media by Lactobacillus reuteri is dependent on CyuC and thiol production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlaltr0%3D&md5=a6988a7fd3b998db5643447011127645CAS | 17142372PubMed |

Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signaling & Behavior 6, 494–500.
Developing a model of plant hormone interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlOhsbw%3D&md5=02652b156cb7bf54a8554ae923fba80aCAS |

Warrilow AGS, Hawkesford MJ (2000) Cysteine synthase (O‐acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. Journal of Experimental Botany 51, 985–993.
Cysteine synthase (O‐acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVClu70%3D&md5=6482b78df66322a113dabf9addc4e0bbCAS |

Wasternack C, Hause B (2013) Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the 2007 review in Annals of Botany. Annals of Botany 111, 1021–1058.
Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the 2007 review in Annals of Botany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslWjs7c%3D&md5=cd6450350ef44a65259e8a28577e3859CAS | 23558912PubMed |

Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008a) Physiological roles of the β-substituted alanine synthase gene family in Arabidopsis. Plant Physiology 146, 310–320.
Physiological roles of the β-substituted alanine synthase gene family in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCmsbk%3D&md5=92da6f519b8a06cee789617571271d49CAS | 18024555PubMed |

Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008b) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. The Plant Cell 20, 2484–2496.
Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnsLjK&md5=faf55e00fa90a77273cc60f25fea603fCAS | 18776059PubMed |

Wei J, Tang QX, Varlamova O, Roche C, Lee R, Leyh TS (2002) Cysteine biosynthetic enzymes are the pieces of a metabolic energy pump. Biochemistry 41, 8493–8498.
Cysteine biosynthetic enzymes are the pieces of a metabolic energy pump.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Krtb0%3D&md5=154c03f9985c7098ff288a4bfde51329CAS | 12081500PubMed |

Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. Journal of Plant Physiology 163, 273–286.
Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislSmtLg%3D&md5=890b16b348765a9cdceeac98aa040a48CAS | 16386330PubMed |

Wirtz M, Berkowitz O, Droux M, Hell R (2001) The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein–protein interaction. European Journal of Biochemistry 268, 686–693.
The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein–protein interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Gntbw%3D&md5=d0aa7b407e560998d27cd86ec963178eCAS | 11168407PubMed |

Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. Journal of Experimental Botany 55, 1785–1798.
O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFaisrs%3D&md5=75857ebec4f51f958dbb6b4e2c1824b7CAS | 15258168PubMed |

Wirtz M, Birke H, Heeg C, Müller C, Hosp F, Throm C, König S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R (2010a) Structure and function of the hetero-oligomeric cysteine synthase complex in plants. The Journal of Biological Chemistry 285, 32810–32817.
Structure and function of the hetero-oligomeric cysteine synthase complex in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12nu7zN&md5=36b6e717155d1ef25a59240b3dd0303fCAS | 20720017PubMed |

Wirtz M, Heeg C, Samami A, Ruppert T, Hell R (2010b) Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include N α-terminal acetylation. Amino Acids 39, 1077–1086.
Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include N α-terminal acetylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SnsbfP&md5=493eb01ea83118bce5cb3be9d4441299CAS | 20658158PubMed |

Wirtz M, Beard KFM, Lee CP, Boltz A, Schwarzländer M, Fuchs C, Meyer AJ, Heeg C, Sweetlove LJ, Ratcliffe RG, Hell R (2012) Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants. The Journal of Biological Chemistry 287, 27941–27947.
Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOksbjO&md5=4f0903ad534a69efe760ab223507f6e0CAS | 22730323PubMed |

Wu YC, Wang XJ, Yu L, Chan FKL, Cheng ASL, Yu J, Sung JJ, Wu WK, Cho CH (2012) Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells. PLoS One 7, e37572
Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12rsb8%3D&md5=8f7464143981f82b10625a4bd6b815dcCAS | 22679478PubMed |

Wybouw N, Dermauw W, Tirry L, Stevens C, Grbić M, Feyereisen R, Van Leeuwen T (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife 3, e02365
A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning.Crossref | GoogleScholarGoogle Scholar | 24843024PubMed |

Xu F, Zhang DW, Zhu F, Tang H, Lv X, Cheng J, Xie HF, Lin HH (2012) A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress. Plant, Cell & Environment 35, 1983–1997.
A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrtLnO&md5=8f27d7c39797115d08c5613a605e7306CAS |

Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and β-cyanoalanine synthase. Plant & Cell Physiology 41, 465–476.
Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and β-cyanoalanine synthase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislOju74%3D&md5=a762e5d9bb7d2a3ee922e3a3e39f61e6CAS |

Yi H, Juergens M, Jez JM (2012) Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants. The Plant Cell 24, 2696–2706.
Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WjsL%2FN&md5=a5388b84215805e82660bd7b470efaa7CAS | 22739827PubMed |

Yip WK, Yang SF (1988) Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiology 88, 473–476.
Cyanide metabolism in relation to ethylene production in plant tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFWlug%3D%3D&md5=1257c900c698e3c7a93a21f3d4ce8c66CAS | 16666329PubMed |

Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. The Plant Cell 21, 2914–2927.
Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVejur7F&md5=2314e50f49c1b907f19aa08c7250a7abCAS | 19773385PubMed |

Youssefian S, Nakamura M, Orudgev E, Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiology 126, 1001–1011.
Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVartbg%3D&md5=059fc0bcf429a919557a27462c3aa566CAS | 11457951PubMed |

Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. International Journal of Molecular Sciences 14, 7405–7432.
A central role for thiols in plant tolerance to abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFWkt78%3D&md5=f110c9cacc1b4ea5458ac16b73252456CAS | 23549272PubMed |

Zhao C, Kumada Y, Imanaka H, Imamura K, Nakanishi K (2006) Cloning, overexpression, purification, and characterization of O-acetylserine sulfhydrylase-B from Escherichia coli. Protein Expression and Purification 47, 607–613.
Cloning, overexpression, purification, and characterization of O-acetylserine sulfhydrylase-B from Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVKitbk%3D&md5=feb4f684e2fb91fc2dfc2d55fc2aae46CAS | 16546401PubMed |

Zook M (1998) Biosynthesis of camalexin from tryptophan pathway intermediates in cell-suspension cultures of Arabidopsis. Plant Physiology 118, 1389–1393.
Biosynthesis of camalexin from tryptophan pathway intermediates in cell-suspension cultures of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVY%3D&md5=7b0048ab8dcb4e0c620f909e3c1eba61CAS | 9847113PubMed |