Environmental factors driving Macrobrachium species richness on a global scale
Amanda Franco Morais A , Douglas Fernandes Rodrigues Alves A B * , Samara Paiva Barros-Alves
A
B
C
Handling Editor: Peter Unmack
Abstract
Understanding the processes that influence species diversity and distribution is a central goal in ecology.
This study investigated the global distribution of freshwater shrimps in the genus Macrobrachium and evaluated the environmental and historical factors driving their species richness across biogeographic realms.
We analysed predictive models composed of multiple environmental predictors across biogeographic regions, testing which hypothesis (temperature–speciation, water–energy and habitat heterogeneity) or a combination of hypotheses best explains species richness.
Our analyses showed that the highest Macrobrachium species richness occurs in the Neotropic and Indo-Malay realms. The best model varied among regions, reflecting regional differences and the historical influences: Afrotropic and Australasia shared similar models, as did Neotropical and Palearctic regions. Indo-Malay exhibited a distinct model, with variations in the most influential variables according to local conditions.
These findings suggest that combined environmental and historical factors are key predictors of Macrobrachium species richness.
This study underscores the importance of integrating environmental and historical factors when assessing species richness patterns and offers a scientific basis for conservation strategies. It highlights the need to consider current environmental changes when protecting biodiversity hotspots and the diversity of Macrobrachium across freshwater ecosystems.
Keywords: biodiversity, biogeography, conservation, environmental factors, freshwater shrimps, historical effects, predictive modelling, species richness.
References
Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Sabaj Pérez MH, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58(5), 403-414.
| Crossref | Google Scholar |
Ahmed ZF, Ahamed F, Rahman MM, Fatema MK (2021) Spawning season, recruitment, and growth of the freshwater prawn Macrobrachium lamarrei (H. Milne-Edwards, 1837) in a perennial wetland, northeastern Bangladesh. Nauplius 29, e2021021.
| Crossref | Google Scholar |
Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winemiller KO, Ripple WJ (2021) Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50(1), 85-94.
| Crossref | Google Scholar | PubMed |
Albuquerque F, Astudillo-Scalia Y, Loyola R, Beier P (2019) Towards an understanding of the drivers of broad-scale patterns of rarity-weighted richness for vertebrates. Biodiversity and Conservation 28(14), 3733-3747.
| Crossref | Google Scholar |
Alves DFR, Martinez PA, Magalhães C, Barros-Alves SP, de Almeida AC, Amado TF (2024a) Global patterns and predictors of primary freshwater crab richness across taxa and realms. Hydrobiologia 851(17), 4149-4165.
| Crossref | Google Scholar |
Alves DFR, Martinez PA, de Barros-Alves SP, de Almeida AC, Elias MAM, Hurt C, Hultgren KM (2024b) Climatic niche evolution and speciation modes in the transisthmian Alpheus shrimps (Caridea: Alpheidae). Journal of Biogeography 51(10), 1944-1957.
| Crossref | Google Scholar |
Anger K (2013) Neotropical Macrobrachium (Caridea: Palaemonidae): on the biology, origin, and radiation of freshwater-invading shrimp. Journal of Crustacean Biology 33(2), 151-183.
| Crossref | Google Scholar |
Balian EV, Segers H, Lévèque C, Martens K (2008) The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595(1), 627-637.
| Crossref | Google Scholar |
Brito EF, Moulton TP, De Souza ML, Bunn SE (2006) Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecology 31(5), 623-633.
| Crossref | Google Scholar |
Brown JH (2014) Why are there so many species in the tropics? Journal of Biogeography 41(1), 8-22.
| Crossref | Google Scholar | PubMed |
Brown RL, Jacobs LA, Peet RK (2007) Species richness: small scale. In ‘eLS’. pp. 1–8. (Wiley) doi:10.1002/9780470015902.a0020488
Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society of London – B. Biological Sciences 274(1614), 1167-1173.
| Crossref | Google Scholar |
Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65(1), 23-35.
| Crossref | Google Scholar |
Busseni G, Caputi L, Piredda R, Fremont P, Hay Mele B, Campese L, Scalco E, de Vargas C, Bowler C, d’Ovidio F, Zingone A, Ribera d’Alcalà M, Iudicone D (2020) Large scale patterns of marine diatom richness: drivers and trends in a changing ocean. Global Ecology and Biogeography 29(11), 1915-1928.
| Crossref | Google Scholar |
Checa MF, Velasco N, Mogollón H (2010) New distributional records for nymphalid species (Lepidoptera: Nymphalidae) for the Chocó Region and western Ecuador. Tropical Lepidoptera Research 20(1), 14-18.
| Google Scholar |
Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404(6781), 990-992.
| Crossref | Google Scholar | PubMed |
Covich AP, Crowl TA, Johnson SL, Pyron M (1996) Distribution and abundance of tropical freshwater shrimp along a stream corridor: response to disturbance. Biotropica 28(4), 484-492.
| Crossref | Google Scholar |
Crowl TA, McDowell WH, Covich AP, Johnson SL (2001) Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82(3), 775-783.
| Crossref | Google Scholar |
Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature 329(6137), 326-327.
| Crossref | Google Scholar |
Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7(12), 1121-1134.
| Crossref | Google Scholar |
da Silva EP, Borba GC, Magalhães C, Zuanon J, Magnusson WE (2020) Habitat segregation among freshwater shrimp species in an Amazonian rainforest stream system. Freshwater Biology 65(4), 674-687.
| Crossref | Google Scholar |
De Grave S, Fransen CHJM (2011) Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zoologische Mededelingen 85, 195-588.
| Google Scholar |
De Grave S, Cai Y, Anker A (2008) Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595, 287-293.
| Crossref | Google Scholar |
De Grave S, Decock W, Dekeyzer S, Davie PJF, Fransen CHJM, Boyko CB, Poore GCB, Macpherson E, Ahyong ST, Crandall KA, de Mazancourt V, Osawa M, Chan T-Y, Ng PKL, Lemaitre R, van der Meij SET, Santos S (2023) Benchmarking global biodiversity of decapod crustaceans (Crustacea: Decapoda). Journal of Crustacean Biology 43(3), ruad042.
| Crossref | Google Scholar |
DeClerck FAJ, Chazdon R, Holl KD, Milder JC, Finegan B, Martinez-Salinas A, Imbach P, Canet L, Ramos Z (2010) Biodiversity conservation in human-modified landscapes of Mesoamerica: past, present and future. Biological Conservation 143(10), 2301-2313.
| Crossref | Google Scholar |
Diniz-Filho JAF, Rangel TFLVB, Hawkins BA (2004) A test of multiple hypotheses for the species richness gradient of South American owls. Oecologia 140(4), 633-638.
| Crossref | Google Scholar | PubMed |
Domisch S, Amatulli G, Jetz W (2015) Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Scientific Data 2, 150073.
| Crossref | Google Scholar |
Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81(2), 163-182.
| Crossref | Google Scholar | PubMed |
Eastwood N, Zhou J, Derelle R, Abdallah MA-E, Stubbings WA, Jia Y, Crawford SE, Davidson TA, Colbourne JK, Creer S, Bik H, Hollert H, Orsini L (2023) 100 Years of anthropogenic impact causes changes in freshwater functional biodiversity. elife 12, RP86576.
| Crossref | Google Scholar |
Fang W-J, Cai Q, Zhao Q, Ji C-J, Zhu J-L, Tang Z-Y, Fang J-Y (2022) Species richness patterns and the determinants of larch forests in China. Plant Diversity 44(5), 436-444.
| Crossref | Google Scholar | PubMed |
Feldmann RM, Schweitzer CE (2006) Paleobiogeography of southern hemisphere decapod Crustacea. Journal of Paleontology 80, 83-103.
| Crossref | Google Scholar |
Ferrer-Castán D, Morales-Barbero J, Vetaas OR (2016) Water-energy dynamics, habitat heterogeneity, history, and broad-scale patterns of mammal diversity. Acta Oecologica 77, 176-186.
| Crossref | Google Scholar |
Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics 46(1), 369-392.
| Crossref | Google Scholar |
García-Guerrero MU (2010) Effect of temperature on consumption rate of main yolk components during embryo development of the prawn Macrobrachium americanum (Crustacea: Decapoda: Palaemonidae). Journal of the World Aquaculture Society 41(S1), 84-92.
| Crossref | Google Scholar |
García-Guerrero M, De Los Santos Romero R, Vega-Villasante F, Cortes-Jacinto E (2017) Conservation and aquaculture of native freshwater prawns: the case of the cauque river prawn Macrobrachium americanum (Bate, 1868). Latin American Journal of Aquatic Research 43(5), 819-827.
| Crossref | Google Scholar |
García-Rodríguez A, Martínez PA, Oliveira BF, Velasco JA, Pyron RA, Costa GC (2021) Amphibian speciation rates support a general role of mountains as biodiversity pumps. The American Naturalist 198, E68-E79.
| Crossref | Google Scholar | PubMed |
Gaston KJ (2000) Global patterns in biodiversity. Nature 405(6783), 220-227.
| Crossref | Google Scholar | PubMed |
Gaston KJ (2007) Latitudinal gradient in species richness. Current Biology 17(15), PR574.
| Crossref | Google Scholar |
Ghosh S, Matthews B, Petchey OL (2024) Temperature and biodiversity influence community stability differently in birds and fishes. Nature Ecology & Evolution 8, 1835-1846.
| Crossref | Google Scholar | PubMed |
Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Progress in Physical Geography: Earth and Environment 32(2), 203-221.
| Crossref | Google Scholar |
Gunawardene NR, Dulip Daniels AED, Gunatilleke IAUN, Gunatilleke CVS, Karunakaran PV, Nayak KG, Prasad S, Puyravaud P, Ramesh BR, Subramanian KA, Vasanthy G (2007) A brief overview of the Western Ghats – Sri Lanka biodiversity hotspot. Current Science 93(11), 1567-1572.
| Google Scholar |
Hamm M, Drossel B (2017) Habitat heterogeneity hypothesis and edge effects in model metacommunities. Journal of Theoretical Biology 426, 40-48.
| Crossref | Google Scholar | PubMed |
Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84(12), 3105-3117.
| Crossref | Google Scholar |
Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology 56(9), 1703-1722.
| Crossref | Google Scholar |
Hernández Hernández LH, Powell MS, Gómez SAF, Jacinto EC, Villasante FV (2024) Scientific knowledge of the Cinnamon River prawn Macrobrachium acanthurus and future perspectives for aquaculture. Aquaculture International 32, 10215-10230.
| Crossref | Google Scholar |
Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344(6188), 1114-1117.
| Crossref | Google Scholar | PubMed |
Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist 93(870), 145-159.
| Crossref | Google Scholar |
Jaramillo F, Destouni G (2015) Local flow regulation and irrigation raise global human water consumption and footprint. Science 350(6265), 1248-1251.
| Crossref | Google Scholar | PubMed |
Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297, 1548-1551.
| Crossref | Google Scholar | PubMed |
Lima JF, Garcia JS, Silva TC (2014) Natural diet and feeding habits of a freshwater prawn (Macrobrachium carcinus: Crustacea, Decapoda) in the estuary of the Amazon River. Dieta natural e hábito alimentar de um camarão de água doce (Macrobrachium carcinus: Crustacea, Decapoda) no estuário do rio Amazonas. Acta Amazonica 44, 235-244 [In English with title, abstract and keywords in English and Portuguese].
| Crossref | Google Scholar |
Liu T, Liu H, Yang Y (2023) Uncovering the determinants of biodiversity hotspots in China: evidence from the drivers of multiple diversity metrics on insect assemblages and implications for conservation. Science of The Total Environment 880, 163287.
| Crossref | Google Scholar |
MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42(3), 594-598.
| Crossref | Google Scholar |
Mantelatto FL, Pileggi LG, Pantaleão JAF, Magalhães C, Villalobos JL, Álvarez F (2021) Multigene phylogeny and taxonomic revision of american shrimps of the genus Cryphiops Dana, 1852 (Decapoda, Palaemonidae) implies a proposal for reversal of precedence with Macrobrachium Spence Bate, 1868. ZooKeys 1047(3), 155-198.
| Crossref | Google Scholar |
March JG, Pringle CM, Townsend MJ, Wilson AI (2002) Effects of freshwater shrimp assemblages on benthic communities along an altitudinal gradient of a tropical island stream. Freshwater Biology 47(3), 377-390.
| Crossref | Google Scholar |
McNamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. Journal of Comparative Physiology B 182, 997-1014.
| Crossref | Google Scholar |
Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82, 2381-2396.
| Crossref | Google Scholar |
Molina WF, Costa GWWF, Cunha IMC, Bertollo LAC, Ezaz T, Liehr T, Cioffi MB (2020) Molecular cytogenetic analysis in freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae). International Journal of Molecular Sciences 21(7), 2599.
| Crossref | Google Scholar |
Murphy NP, Austin CM (2005) Phylogenetic relationships of the globally distributed freshwater prawn genus Macrobrachium (Crustacea: Decapoda: Palaemonidae): biogeography, taxonomy and the convergent evolution of abbreviated larval development. Zoologica Scripta 34(2), 187-197.
| Crossref | Google Scholar |
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853-858.
| Crossref | Google Scholar | PubMed |
Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world, a new map of life on earth. BioScience 51(11), 933-938.
| Crossref | Google Scholar |
Oribhabor BJ (2016) Impact of human activities on biodiversity in Nigerian aquatic ecosystems. Science International 4(1), 12-20.
| Crossref | Google Scholar |
Orton JH (1920) Sea-temperature, breeding and distribution in marine animals. Journal of the Marine Biological Association of the United Kingdom 12, 339-366.
| Crossref | Google Scholar |
Pearson RG, Boyero L (2009) Gradients in regional diversity of freshwater taxa. Journal of the North American Benthological Society 28(2), 504-514.
| Crossref | Google Scholar |
Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K (2011) The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Climate Research 46, 15-27.
| Crossref | Google Scholar |
Pileggi LG, Mantelatto FL (2010) Molecular phylogeny of the freshwater prawn genus Macrobrachium (Decapoda, Palaemonidae), with emphasis on the relationships among selected American species. Invertebrate Systematics 24(2), 194-208.
| Crossref | Google Scholar |
Qian H (2008) Effects of historical and contemporary factors on global patterns in avian species richness. Journal of Biogeography 35(8), 1362-1373.
| Crossref | Google Scholar |
Reid WV (1998) Biodiversity hotspots. Trends in Ecology & Evolution 13(7), 275-280.
| Crossref | Google Scholar | PubMed |
Richter M, Diertl K-H, Emck P, Peters T, Beck E (2009) Reasons for an outstanding plant diversity in the tropical Andes of southern Ecuador. Landscape Online 12, 1-35.
| Crossref | Google Scholar |
Roell YE, Phillips JG, Parent CE (2021) Effect of topographic complexity on species richness in the Galápagos Islands. Journal of Biogeography 48(10), 2645-2655.
| Crossref | Google Scholar |
Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65(3), 514-527.
| Crossref | Google Scholar |
Román-Palacios C, Moraga-López D, Wiens JJ (2022) The origins of global biodiversity on land, sea and freshwater. Ecology Letters 25(6), 1376-1386.
| Crossref | Google Scholar | PubMed |
Rueda-M N, Salgado-Roa FC, Gantiva-Q CH, Pardo-Díaz C, Salazar C (2021) Environmental drivers of diversification and hybridization in Neotropical butterflies. Frontiers in Ecology and Evolution 9, 750703.
| Crossref | Google Scholar |
Short JW (2004) A revision of Australian river prawns, Macrobrachium (Crustacea: Decapoda: Palaemonidae). Hydrobiologia 525, 1-100.
| Crossref | Google Scholar |
Simpson BB, Todzia CA (1990) Patterns and processes in the development of the high Andean flora. American Journal of Botany 77(11), 1419-1432.
| Crossref | Google Scholar |
Snyder MN, Freeman MC, Purucker ST, Pringle CM (2016) Using occupancy modeling and logistic regression to assess the distribution of shrimp species in lowland streams, Costa Rica: does regional groundwater create favorable habitat? Freshwater Science 35(1), 80-90.
| Crossref | Google Scholar |
Vera-Silva AL, Carvalho FL, Mantelatto FL (2016) Distribution and genetic differentiation of Macrobrachium jelskii (Miers, 1877) (Natantia: Palaemonidae) in Brazil reveal evidence of non-natural introduction and cryptic allopatric speciation. Journal of Crustacean Biology 36, 373-383.
| Crossref | Google Scholar |
Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annual Review of Ecology, Evolution, and Systematics 30, 257-300.
| Crossref | Google Scholar |
Wiens JJ (2011) The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 366(1576), 2336-2350.
| Crossref | Google Scholar |
Yan H, Liang C, Li Z, Liu Z, Miao B, He C, Sheng L (2015) Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe. PLoS ONE 10(4), e0125300.
| Crossref | Google Scholar |
Zhang Y, Loreau M, He N, Wang J, Pan Q, Bai Y, Han X (2018) Climate variability decreases species richness and community stability in a temperate grassland. Oecologia 188(1), 183-192.
| Crossref | Google Scholar | PubMed |