Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
REVIEW

Population genetic structure of Indo-West Pacific carcharhinid sharks: what do we know and where to from here?

Brenton M. Pember https://orcid.org/0000-0003-4994-841X A D , Jennifer A. Chaplin A , Neil R. Loneragan A B and Matias Braccini A C
+ Author Affiliations
- Author Affiliations

A Environmental and Conservation Sciences and Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.

B Asia Research Centre, Murdoch University, Murdoch, WA 6150, Australia.

C Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Hillarys, WA 6025, Australia.

D Corresponding author. Email: brentonpember@bigpond.com

Pacific Conservation Biology 26(4) 319-337 https://doi.org/10.1071/PC19046
Submitted: 14 November 2019  Accepted: 27 March 2020   Published: 19 May 2020

Abstract

The Carcharhinidae is one of the most at-risk shark families in the Indo-West Pacific (IWP), which is a global priority for the conservation of elasmobranchs. Of the 57 described species of carcharhinids, 43 are known from the IWP, where many are subject to high fishing pressure. Many of these species are also found outside this bioregion. Understanding the connectivity of individual species across their ranges is paramount to successful management of their fisheries. Studies of population genetic structure have been the mainstay for assessing connectivity. Here, we review 41 studies pertaining to the population genetic structure of 20 species of carcharhinid whose ranges include the IWP and for which relevant data are available. The genetic markers used range from microsatellite loci and small mitochondrial DNA sequences (375 to 4797 bp) to genomic analyses. Overall, the population genetic structure for these carcharhinids was varied but patterns emerged according to the lifestyle of the species, with the greatest structure shown by species that are highly habitat dependent and the least structure shown by oceanic species. Experimental designs of the underlying studies have, however, often been opportunistic with small sample sizes, few locations sampled and based on analysis of single mitochondrial regions and/or few microsatellite markers. The literature provides a basis for understanding the population genetic structure of IWP carcharhinids, but future research needs to focus on the application of population genomics and more robust experimental design so that population genetic structure can be quantified with higher certainty and resolution over finer spatial scales.

Additional keywords: Carcharhinidae, genetics, population structure, shark.


References

Almojil, D., Cliff, G., and Spaet, J. L. (2018). Weak population structure of the spot‐tail shark Carcharhinus sorrah and the blacktip shark C. limbatus along the coasts of the Arabian Peninsula, Pakistan, and South Africa. Ecology and Evolution 8, 9536–9549.
Weak population structure of the spot‐tail shark Carcharhinus sorrah and the blacktip shark C. limbatus along the coasts of the Arabian Peninsula, Pakistan, and South Africa.Crossref | GoogleScholarGoogle Scholar | 30377521PubMed |

Arai, T., and Azri, A. (2019). Diversity, occurrence and conservation of sharks in the southern South China Sea. PLoS One 14, e0213864.
Diversity, occurrence and conservation of sharks in the southern South China Sea.Crossref | GoogleScholarGoogle Scholar | 30901342PubMed |

Bailleul, D., Mackenzie, A., Sacchi, O., Poisson, F., Bierne, N., and Arnaud‐Haond, S. (2018). Large‐scale genetic panmixia in the blue shark (Prionace glauca): a single worldwide population, or a genetic lag‐time effect of the “grey zone” of differentiation? Evolutionary Applications 11, 614–630.
Large‐scale genetic panmixia in the blue shark (Prionace glauca): a single worldwide population, or a genetic lag‐time effect of the “grey zone” of differentiation?Crossref | GoogleScholarGoogle Scholar | 29875806PubMed |

Bass, A. J., D’Aubrey, J. D., and Kistnasamy, N. (1973). Sharks of the east coast of southern Africa. I. The genus Carcharhinus (Carcharhinidae). Investigational Report Oceanographic Research Institute 33, 1–168.

Bearham, D., Robert, M., Chaplin, J. A., Moore, G. I., Fairclough, D. V., and Bertram, A. (2019). Molecular evidence of three species in the Pseudocaranx dentex complex (Carangidae) in Australian waters. Marine and Freshwater Research , .
Molecular evidence of three species in the Pseudocaranx dentex complex (Carangidae) in Australian waters.Crossref | GoogleScholarGoogle Scholar |

Benavides, M. T., Horn, R. L., Feldheim, K. A., Shivji, M. S., Clarke, S. C., Wintner, S., Natanson, L., Braccini, M., Boomer, J. J., Gulak, S. J. B., and Chapman, D. D. (2011). Global phylogeography of the dusky shark Carcharhinus obscurus: implications for fisheries management and monitoring the shark fin trade. Endangered Species Research 14, 13–22.
Global phylogeography of the dusky shark Carcharhinus obscurus: implications for fisheries management and monitoring the shark fin trade.Crossref | GoogleScholarGoogle Scholar |

Benestan, L., Gosselin, T., Perrier, C., Sainte‐Marie, B., Rochette, R., and Bernatchez, L. (2015). RAD genotyping reveals fine‐scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Molecular Ecology 24, 3299–3315.
RAD genotyping reveals fine‐scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus).Crossref | GoogleScholarGoogle Scholar | 25977167PubMed |

Bernard, A. M., Feldheim, K. A., Heithaus, M. R., Wintner, S. P., Wetherbee, B. M., and Shivji, M. S. (2016). Global population genetic dynamics of a highly migratory, apex predator shark. Molecular Ecology 25, 5312–5329.
Global population genetic dynamics of a highly migratory, apex predator shark.Crossref | GoogleScholarGoogle Scholar | 27662523PubMed |

Bonfil, R., Clarke, S., and Nakano, H. (2008). The biology and ecology of the oceanic whitetip shark, Carcharhinus longimanus. In ‘Sharks of the Open Ocean: Biology, Fisheries and Conservation’. (Eds M. D. Camhi, E. K. Pikitch, and E. A. Babcock.) Chapter 11, pp. 128–139. (Blackwell Publishing: Oxford.)

Boomer, J. J., Peddemors, V., and Stow, A. J. (2010). Genetic data show that Carcharhinus tilstoni is not confined to the tropics, highlighting the importance of a multifaceted approach to species identification. Journal of Fish Biology 77, 1165–1172.
Genetic data show that Carcharhinus tilstoni is not confined to the tropics, highlighting the importance of a multifaceted approach to species identification.Crossref | GoogleScholarGoogle Scholar | 21039498PubMed |

Booth, H., Muttaqin, E., Simeon, B., Ichsan, M., Siregar, U., Yulianto, I., and Kassem, K. (2018). ‘Shark and Ray Conservation and Management in Indonesia: Status and Strategic Priorities 2018–2023.’ (Wildlife Conservation Society: Bogar, Indonesia.)

Borenstein, M., Hedges, L., Higgins, J., and Rothstein, H. (2009). When does it make sense to perform a meta-analysis? In ‘Introduction to Meta-Analysis’. pp. 357–364. (John Wiley & Sons Ltd: West Sussex, UK.)

Braccini, M., de Lestang, S., and McAuley, R. (2018). Dusky sharks (Carcharhinus obscurus) undertake large-scale migrations between tropical and temperate ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 75, 1525–1533.
Dusky sharks (Carcharhinus obscurus) undertake large-scale migrations between tropical and temperate ecosystems.Crossref | GoogleScholarGoogle Scholar |

Camargo, S. M., Coelho, R., Chapman, D., Howey-Jordan, L., Brooks, E. J., Fernando, D., Mendes, N. J., Hazin, F. H. V., Oliveria, C., Santos, M. N., Foresti, F., and Mendonca, F. F. (2016). Structure and genetic variability of the oceanic whitetip shark, Carcharhinus longimanus, determined using mitochondrial DNA. PLoS One 11, e0155623.
Structure and genetic variability of the oceanic whitetip shark, Carcharhinus longimanus, determined using mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 27187497PubMed |

Carrier, J. C., Musick, J. A., and Heithaus, M. R. (2010). ‘Sharks and Their Relatives. II: Biodiversity, Adaptive Physiology, and Conservation.’ (CRC Press: Boca Raton, FL.)

Castro, J. I. (1996). Biology of the blacktip shark, Carcharhinus limbatus, off the southeastern United States. Bulletin of Marine Science 59, 508–522.

Castro, J. I. (2011). Resurrection of the name Carcharhinus cerdale, a species different from Carcharhinus porosus. Aqua International Journal of Ichthyology 17, 1–10.

Chapman, D. D., Pinhale, D., and Shivji, M. S. (2009). Tracking the fin trade: genetic stock identification in western Atlantic scalloped hammerhead sharks Sphyrna lewini. Endangered Species Research 9, 221–228.
Tracking the fin trade: genetic stock identification in western Atlantic scalloped hammerhead sharks Sphyrna lewini.Crossref | GoogleScholarGoogle Scholar |

Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P., and Hueter, R. E. (2015). There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Annual Review of Marine Science 7, 547–570.
There and back again: a review of residency and return migrations in sharks, with implications for population structure and management.Crossref | GoogleScholarGoogle Scholar | 25251267PubMed |

Chin, A., Tobin, A. J., Heupel, M. R., and Simpfendorfer, C. A. (2013a). Population structure and residency patterns of the blacktip reef shark Carcharhinus melanopterus in turbid coastal environments. Journal of Fish Biology 82, 1192–1210.
Population structure and residency patterns of the blacktip reef shark Carcharhinus melanopterus in turbid coastal environments.Crossref | GoogleScholarGoogle Scholar | 23557299PubMed |

Chin, A., Heupel, M. R., Simpfendorfer, C. A., and Tobin, A. J. (2013b). Ontogenetic movements of juvenile blacktip reef sharks: evidence of dispersal and connectivity between coastal habitats and coral reefs. Aquatic Conservation 23, 468–474.
Ontogenetic movements of juvenile blacktip reef sharks: evidence of dispersal and connectivity between coastal habitats and coral reefs.Crossref | GoogleScholarGoogle Scholar |

Chin, A., Simpfendorfer, C. A., White, W. T., Johnson, G. J., McAuley, R. B., and Heupel, M. R. (2017). Crossing lines: a multidisciplinary framework for assessing connectivity of hammerhead sharks across jurisdictional boundaries. Scientific Reports 7, 46061.
Crossing lines: a multidisciplinary framework for assessing connectivity of hammerhead sharks across jurisdictional boundaries.Crossref | GoogleScholarGoogle Scholar | 28429742PubMed |

Clarke, S. C., McAllister, M. K., Milner-Gulland, E. J., Kirkwood, G. P., Michielsens, C. G., Agnew, D. J., Pikitch, E. K., Nakano, H., and Shivji, M. S. (2006). Global estimates of shark catches using trade records from commercial markets. Ecology Letters 9, 1115–1126.
Global estimates of shark catches using trade records from commercial markets.Crossref | GoogleScholarGoogle Scholar | 16972875PubMed |

Clarke, C. R., Karl, S. A., Horn, R. L., Bernard, A. M., Lea, J. S., Hazin, F. H., Prodohl, P. A., and Shivji, M. S. (2015). Global mitochondrial DNA phylogeography and population structure of the silky shark, Carcharhinus falciformis. Marine Biology 162, 945–955.
Global mitochondrial DNA phylogeography and population structure of the silky shark, Carcharhinus falciformis.Crossref | GoogleScholarGoogle Scholar |

Compagno, L. J. V. (1984). FAO species catalogue. Vol. 4. 1984 Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 2. Carcharhiniformes. FAO Fish.Synop., (125) Vol. 4, Pt. 2: 251–655.

Compagno, L., Dando, M., and Fowler, S. (2005). ‘Sharks of the World.’ (Princeton University Press: Princeton, NJ.)

Corrigan, S., Delser, P. M., Eddy, C., Duffy, C., Yang, L., Li, C., Bazinet, A. L., Mona, S., and Naylor, G. J. (2017). Historical introgression drives pervasive mitochondrial admixture between two species of pelagic sharks. Molecular Phylogenetics and Evolution 110, 122–126.
Historical introgression drives pervasive mitochondrial admixture between two species of pelagic sharks.Crossref | GoogleScholarGoogle Scholar | 28286223PubMed |

CToL (2018). Chondrichthyan tree of life. Available at: https://sharksrays.org/ [accessed 16 March 2018].

Domingues, R. R., Hilsdorf, A. W. S., and Gadig, O. B. F. (2018a). The importance of considering genetic diversity in shark and ray conservation policies. Conservation Genetics 19, 501–525.
The importance of considering genetic diversity in shark and ray conservation policies.Crossref | GoogleScholarGoogle Scholar |

Domingues, R. R., Hilsdorf, A. W., Shivji, M. M., Hazin, F. V., and Gadig, O. B. (2018b). Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Reviews in Fish Biology and Fisheries 28, 213–227.
Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Duchene, S., Archer, F. I, Vilstrup, J., Caballero, S., and Morin, P. A. (2011). Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PLoS One 6, e27138.
Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation.Crossref | GoogleScholarGoogle Scholar | 22073275PubMed |

Dudgeon, C. L., Blower, D. C., Broderick, D., Giles, J. L., Holmes, B. J., Kashiwagi, T., Kruck, N. C., Morgan, J. A., Tillett, B. J., and Ovenden, J. R. (2012). A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. Journal of Fish Biology 80, 1789–1843.
A review of the application of molecular genetics for fisheries management and conservation of sharks and rays.Crossref | GoogleScholarGoogle Scholar | 22497408PubMed |

Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., Carlson, J. K., Davidson, L. N. K., Fordham, S. V., Francis, M. P., Pollock, C. M., Simpfendorfer, C. A., Burgess, G. H., Carpenter, K. E., Compagno, L. J. V., Ebert, D. A., Gibson, C., Heupel, M. R., Livingstone, S. R., Sanciangco, J. C., Stevens, J. D., Valenti, S., and White, W. T. (2014). Extinction risk and conservation of the world’s sharks and rays. eLife 3, e00590.
Extinction risk and conservation of the world’s sharks and rays.Crossref | GoogleScholarGoogle Scholar | 24448405PubMed |

Eschmeyer, W. N., Fricke, R., and van der Laan, R. (2018). Catalog of fishes: genera, species references. Available at: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp [accessed 16 February 2018].

FAO (2016). Fishery and aquaculture statistics. Global capture production 1950–2014 (FishstatJ). In ‘FAO Fisheries and Aquaculture Department [online or CD-ROM]. Rome. Updated 2016’. Available at: http://www.fao.org/fishery/statistics/software/fishstatj/en [accessed 10 June 2016].

Feldheim, K. A., Gruber, S. H., Dibattista, J. D., Babcock, E. A., Kessel, S. T., Hendry, A. P., Pikitch, E. K., Ashley, M. V., and Chapman, D. D. (2014). Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks. Molecular Ecology 23, 110–117.
Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks.Crossref | GoogleScholarGoogle Scholar | 24192204PubMed |

Ferreira, L. C., Mansfield, K. L., Thums, M., and Meekan, M. G. (2019). Satellite tracking technologies and their application to shark movement ecology. In ‘Shark Research: Emerging Technologies and Applications for the Field and Laboratory’. (Eds J. C. Carrier, M. R. Heithaus, and C. A. Simpfendorfer.) Chapter 19, pp 357–377. (CRC Press: Boca Raton, FL.)

Feutry, P., Kyne, P. M., Pillans, R. D., Chen, X., Naylor, G. J. P., and Grewe, P. M. (2014). Mitogenomics of the speartooth shark challenges ten years on control region sequencing. BMC Evolutionary Biology 14, 232.
Mitogenomics of the speartooth shark challenges ten years on control region sequencing.Crossref | GoogleScholarGoogle Scholar | 25406508PubMed |

Feutry, P., Kyne, P. M., Pillans, R. D., Chen, X., Marthick, J. R., Morgan, D. L., and Grewe, P. M. (2015). Whole mitogenome sequencing refines population structure of the Critically Endangered sawfish Pristis pristis. Marine Ecology Progress Series 533, 237–244.
Whole mitogenome sequencing refines population structure of the Critically Endangered sawfish Pristis pristis.Crossref | GoogleScholarGoogle Scholar |

Fischer, M. C., Rellstab, C., Leuzinger, M., Romet, M., Gugerli, F., Shimizu, K. K., Holderegger, R., and Widmer, A. (2017). Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18, 69.
Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri.Crossref | GoogleScholarGoogle Scholar | 28077077PubMed |

Flood, M., Stobutzki, I., Andrews, J., Ashby, C., Begg, G., Fletcher, R., Gardner, C., Georgeson, L., Hansen, S., Hartmann, K., Hone, P., Horvat, P., Maloney, L., McDonald, B., Moore, A., Roelofs, A., Sainsbury, K., Saunders, T., Smith, T., Stewardson, C., Stewart, J., and Wise, B. (2014). Status of key Australian fish stocks reports 2014. Fisheries Research and Development Corporation, Canberra.

Galván-Tirado, C., Díaz-Jaimes, P., García-de León, F. J., Galván-Magaña, F., and Uribe-Alcocer, M. (2013). Historical demography and genetic differentiation inferred from the mitochondrial DNA of the silky shark (Carcharhinus falciformis) in the Pacific Ocean. Fisheries Research 147, 36–46.
Historical demography and genetic differentiation inferred from the mitochondrial DNA of the silky shark (Carcharhinus falciformis) in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. J., Chaplin, J. A., Potter, I. C., and Fairclough, D. V. (2015). Pelagic early life stages promote connectivity in the demersal labrid Choerodon rubescens. Journal of Experimental Marine Biology and Ecology 472, 142–150.
Pelagic early life stages promote connectivity in the demersal labrid Choerodon rubescens.Crossref | GoogleScholarGoogle Scholar |

Garnett, S. T., and Christidis, L. (2017). Taxonomy anarchy hampers conservation. NATNews 546, 25.

Geraghty, P. T., Williamson, J. E., Macbeth, W. G., Wintner, S. P., Harry, A. V., Ovenden, J. R., and Gillings, M. R. (2013). Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific. PLoS One 8, e75169.
Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific.Crossref | GoogleScholarGoogle Scholar | 24086462PubMed |

Geraghty, P. T., Williamson, J. E., Macbeth, W. G., Blower, D. C., Morgan, J. A. T., Johnson, G., Ovenden, J. R., and Gillings, M. R. (2014). Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters. Endangered Species Research 24, 45–60.
Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters.Crossref | GoogleScholarGoogle Scholar |

Geraghty, P. T., Macbeth, W. G., and Williamson, J. E. (2016). Aspects of the reproductive biology of dusky, spinner and sandbar sharks (Family Carcharhinidae) from the Tasman Sea. Marine and Freshwater Research 67, 513–525.
Aspects of the reproductive biology of dusky, spinner and sandbar sharks (Family Carcharhinidae) from the Tasman Sea.Crossref | GoogleScholarGoogle Scholar |

Giles, J. L., Ovenden, J. R., AlMojil, D., Garvilles, E., Khampetch, K.-o., Manjebrayakath, H., and Riginos, C. (2014). Extensive genetic population structure in the Indo–West Pacific spot-tail shark, Carcharhinus sorrah. Bulletin of Marine Science 90, 427–454.
Extensive genetic population structure in the Indo–West Pacific spot-tail shark, Carcharhinus sorrah.Crossref | GoogleScholarGoogle Scholar |

Gillet, E. M. (1999). Minimum sample sizes for sampling genetic marker distributions. In ‘Which Marker for Which purpose? Molecular Tools for Biodiversity’. (Ed E. M. Gillet.) Available at: http://webdoc.sub.gwdg.de/ebook/y/1999/whichmar ker/index.htm

Gledhill, K. S., Kessel, S. T., Guttridge, T. L., Hansell, A. C., Bester-van der Merwe, A. E., Feldheim, K. A., Gruber, S. H., and Chapman, D. D. (2015). Genetic structure, population demography and seasonal occurrence of blacktip shark Carcharhinus limbatus in Bimini, the Bahamas. Journal of Fish Biology 87, 1371–1388.
Genetic structure, population demography and seasonal occurrence of blacktip shark Carcharhinus limbatus in Bimini, the Bahamas.Crossref | GoogleScholarGoogle Scholar | 26709212PubMed |

Green, M. E., Appleyard, S. A., White, W., Tracey, S., Devloo-Delva, F., and Ovenden, J. R. (2019). Novel multimarker comparisons address the genetic population structure of silvertip sharks (Carcharhinus albimarginatus). Marine and Freshwater Research 70, 1007–1019.
Novel multimarker comparisons address the genetic population structure of silvertip sharks (Carcharhinus albimarginatus).Crossref | GoogleScholarGoogle Scholar |

Hale, M. L., Burg, T. M., and Steeves, T. E. (2012). Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One 7, e45170.
Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies.Crossref | GoogleScholarGoogle Scholar | 22984627PubMed |

Harry, A. V., Simpfendorfer, C. A., and Tobin, A. J. (2010). Improving age, growth, and maturity estimates for aseasonally reproducing chondrichthyans. Fisheries Research 106, 393–403.
Improving age, growth, and maturity estimates for aseasonally reproducing chondrichthyans.Crossref | GoogleScholarGoogle Scholar |

Harry, A. V., Morgan, J. A., Ovenden, J. R., Tobin, A. J., Welch, D. J., and Simpfendorfer, C. A. (2012). Comparison of the reproductive ecology of two sympatric blacktip sharks (Carcharhinus limbatus and Carcharhinus tilstoni) off north-eastern Australia with species identification inferred from vertebral counts. Journal of Fish Biology 81, 1225–1233.
Comparison of the reproductive ecology of two sympatric blacktip sharks (Carcharhinus limbatus and Carcharhinus tilstoni) off north-eastern Australia with species identification inferred from vertebral counts.Crossref | GoogleScholarGoogle Scholar | 22957866PubMed |

Harry, A. V., Tobin, A. J., and Simpfendorfer, C. A. (2013). Age, growth and reproductive biology of the spot-tail shark, Carcharhinus sorrah, and the Australian blacktip shark, C. tilstoni, from the Great Barrier Reef World Heritage Area, north-eastern Australia. Marine and Freshwater Research 64, 277–293.
Age, growth and reproductive biology of the spot-tail shark, Carcharhinus sorrah, and the Australian blacktip shark, C. tilstoni, from the Great Barrier Reef World Heritage Area, north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Harry, A. V., Butcher, P. A., Macbeth, W. G., Morgan, J. A., Taylor, S. M., and Geraghty, P. T. (2019). Life history of the common blacktip shark, Carcharhinus limbatus, from central eastern Australia and comparative demography of a cryptic shark complex. Marine and Freshwater Research 70, 834–848.
Life history of the common blacktip shark, Carcharhinus limbatus, from central eastern Australia and comparative demography of a cryptic shark complex.Crossref | GoogleScholarGoogle Scholar |

Hedgecock, D., Barber, P. H., and Edmands, S. (2007). Genetic approaches to measuring connectivity. Oceanography (Washington, D.C.) 20, 70–79.
Genetic approaches to measuring connectivity.Crossref | GoogleScholarGoogle Scholar |

Heist, E. J. (2012). Genetics of sharks, skates and rays. In ‘Biology of Sharks and Their Relatives’. (Eds J. C. Carrier, J. A. Musick, and M. R. Heithaus.) Chapter 16, pp. 487–504. (CRC Press: Boca Raton, FL.)

Hemmer-Hansen, J., Therkildsen, N. O., and Pujolar, J. M. (2014). Population genomics of marine fishes: next-generation prospects and challenges. The Biological Bulletin 227, 117–132.
Population genomics of marine fishes: next-generation prospects and challenges.Crossref | GoogleScholarGoogle Scholar | 25411371PubMed |

Holmes, B. J., Williams, S. M., Otway, N. M., Nielsen, E. E., Maher, S. L., Bennett, M. B., and Ovenden, J. R. (2017). Population structure and connectivity of tiger sharks (Galeocerdo cuvier) across the Indo-Pacific Ocean basin. Royal Society Open Science 4, 170309.
Population structure and connectivity of tiger sharks (Galeocerdo cuvier) across the Indo-Pacific Ocean basin.Crossref | GoogleScholarGoogle Scholar | 29291060PubMed |

Horn, R. L., Robbins, W., McCauley, D., Lobel, P., and Shivji, M. S. (2008). Population genetic structure of a coral reef ecosystem apex predator the gray reef shark (Carcharhinus amblyrhynchos). Marine and Environmental Sciences Faculty Proceedings, Presentations, Speeches. Lectures 7, 2008.

Hussey, N. E., McCarthy, I. D., Dudley, S. F. J., and Mann, B. Q. (2009). Nursery grounds, movement patterns and growth rates of dusky sharks, Carcharhinus obscurus: a long-term tag and release study in South African waters. Marine and Freshwater Research 60, 571–583.
Nursery grounds, movement patterns and growth rates of dusky sharks, Carcharhinus obscurus: a long-term tag and release study in South African waters.Crossref | GoogleScholarGoogle Scholar |

Hussey, N. E., MacNeil, M. A., and Fisk, A. T. (2010). The requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks. Hydrobiologia 654, 1–5.
The requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks.Crossref | GoogleScholarGoogle Scholar |

Jaiteh, V. F., Lindfield, S. J., Mangubhai, S., Warren, C., Fitzpatrick, B., and Loneragan, N. R. (2016). Higher abundance of marine predators and changes in fishers’ behavior following spatial protection within the world’s biggest shark fishery. Frontiers in Marine Science 3, 43.
Higher abundance of marine predators and changes in fishers’ behavior following spatial protection within the world’s biggest shark fishery.Crossref | GoogleScholarGoogle Scholar |

Jaiteh, V. F., Hordyk, A. R., Braccini, M., Warren, C., and Loneragan, N. R. (2017a). Shark finning in eastern Indonesia: assessing the sustainability of a data-poor fishery. ICES Journal of Marine Science 74, 242–253.
Shark finning in eastern Indonesia: assessing the sustainability of a data-poor fishery.Crossref | GoogleScholarGoogle Scholar |

Jaiteh, V. F., Loneragan, N. R., and Warren, C. (2017b). The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Marine Policy 82, 224–233.
The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods.Crossref | GoogleScholarGoogle Scholar |

Junge, C., Donnellan, S. C., Huveneers, C., Bradshaw, C. J., Simon, A., Drew, M., Duffy, C., Johnson, G., Cliff, G., Braccini, M., Cutmore, S. C., Butcher, P., McAuley, R., Peddermors, V., Rogers, P., and Gillanders, B. M. (2019). Comparative population genomics confirms little population structure in two commercially targeted carcharhinid sharks. Marine Biology 166, 16.
Comparative population genomics confirms little population structure in two commercially targeted carcharhinid sharks.Crossref | GoogleScholarGoogle Scholar |

Karl, S. A., Castro, A. L. F., Lopez, J. A., Charvet, P., and Burgess, G. H. (2011). Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA. Conservation Genetics 12, 371–382.
Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA.Crossref | GoogleScholarGoogle Scholar |

Keeney, D. B., and Heist, E. J. (2006). Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Molecular Ecology 15, 3669–3679.
Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal.Crossref | GoogleScholarGoogle Scholar | 17032265PubMed |

Keeney, D. B., Heupel, M., Hueter, R. E., and Heist, E. J. (2003). Genetic heterogeneity among blacktip shark, Carcharhinus limbatus, continental nurseries along the U.S. Atlantic and Gulf of Mexico. Marine Biology 143, 1039–1046.
Genetic heterogeneity among blacktip shark, Carcharhinus limbatus, continental nurseries along the U.S. Atlantic and Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Keeney, D. B., Heupel, M. R., Hueter, R. E., and Heist, E. J. (2005). Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Molecular Ecology 14, 1911–1923.
Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea.Crossref | GoogleScholarGoogle Scholar | 15910315PubMed |

Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H., Caig, V., Heller-Uszynska, K., Jaccoud, D., Hopper, C., and Aschenbrenner-Kilian, M. (2012). Diversity arrays technology: a generic genome profiling technology on open platforms. In ‘Data Production and Analysis in Population Genomics’. (Eds F. Pompanon and A. Bonin) pp. 67–89. (Humana Press: Totowa, NJ.)

King, J. R., Wetklo, M., Supernault, J., Taguchi, M., Yokawa, K., Sosa-Nishizaki, O., and Withler, R. E. (2015). Genetic analysis of stock structure of blue shark (Prionace glauca) in the north Pacific ocean. Fisheries Research 172, 181–189.
Genetic analysis of stock structure of blue shark (Prionace glauca) in the north Pacific ocean.Crossref | GoogleScholarGoogle Scholar |

Kohler, N. E., Turner, P. A., Hoey, J. J., Natanson, L. J., and Briggs, R. (2002). Tag and recapture data for three pelagic shark species: blue shark (Prionace glauca), shortfin mako (Isurus xyrinchus), and porbeagle (Lamna nasus) in the north Atlantic Ocean. Collective Volume of Scientific Papers ICCAT 54, 1231–1260.

Lam, V. Y., and Sadovy de Mitcheson, Y. (2011). The sharks of South East Asia – unknown, unmonitored and unmanaged. Fish and Fisheries 12, 51–74.
The sharks of South East Asia – unknown, unmonitored and unmanaged.Crossref | GoogleScholarGoogle Scholar |

Larson, S. E., Daly-Engel, T. S., and Phillips, N. M. (2017). Review of current conservation genetic analyses of Northeast Pacific sharks. Advances in Marine Biology 77, 79–110.
Review of current conservation genetic analyses of Northeast Pacific sharks.Crossref | GoogleScholarGoogle Scholar | 28882215PubMed |

Last, P. R., and Stevens, J. D. (2009). ‘Sharks and Rays of Australia.’ (CSIRO Publishing: Melbourne.)

Last, P. R., White, W. T., and Pogonoski, J. J. (2010). ‘Descriptions of New Sharks and Rays from Borneo.’ (CSIRO: Hobart.)

Li, C., Corrigan, S., Yang, L., Straube, N., Harris, M., Hofreiter, M., White, W., and Naylor, G. J. (2015). DNA capture reveals transoceanic gene flow in endangered river sharks. Proceedings of the National Academy of Sciences of the United States of America 112, 13302–1330710.1073/PNAS.1508735112

Lowe, W. H., and Allendorf, F. W. (2010). What can genetics tell us about population connectivity? Molecular Ecology 19, 3038–3051.
What can genetics tell us about population connectivity?Crossref | GoogleScholarGoogle Scholar | 20618697PubMed |

Martin, A. P. (1999). Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again). Molecular Biology and Evolution 16, 996–1002.
Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again).Crossref | GoogleScholarGoogle Scholar | 10406116PubMed |

McAuley, R. B., Simpfendorfer, C. A., Hyndes, G. A., and Lenanton, R. C. J. (2007). Distribution and reproductive biology of the sandbar shark, Carcharhinus plumbeus (Nardo), in Western Australian waters. Marine and Freshwater Research 58, 116–126.
Distribution and reproductive biology of the sandbar shark, Carcharhinus plumbeus (Nardo), in Western Australian waters.Crossref | GoogleScholarGoogle Scholar |

Medved, R. J., and Marshall, J. A. (1983). Short-term movements of young sandbar sharks, Carcharhinus plumbeus (Pisces, Carcharhinidae). Bulletin of Marine Science 33, 87–93.

Momigliano, P., Jaiteh, V., and Speed, C. (2014). Predators in danger: shark conservation and management in Australia, New Zealand, and their neighbours. In ‘Austral Ark’. (Eds A. Stow, G. Holwell, and N. Maclean.). pp. 467–491. (Cambridge University Press: Cambridge.)

Momigliano, P., Harcourt, R., Robbins, W. D., and Stow, A. (2015). Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data. Scientific Reports 5, 13229.
Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data.Crossref | GoogleScholarGoogle Scholar | 26314287PubMed |

Momigliano, P., Harcourt, R., Robbins, W. D., Jaiteh, V., Mahardika, G. N., Sembiring, A., and Stow, A. (2017). Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Heredity 119, 142–153.
Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).Crossref | GoogleScholarGoogle Scholar | 28422134PubMed |

Morgan, J. A., Harry, A. V., Welch, D. J., Street, R., White, J., Geraghty, P. T., Macbeth, W. G., Tobin, A., Simpfendorfer, C. A., and Ovenden, J. R. (2012). Detection of interspecies hybridisation in Chondrichthyes: hybrids and hybrid offspring between Australian (Carcharhinus tilstoni) and common (C. limbatus) blacktip shark found in an Australian fishery. Conservation Genetics 13, 455–463.
Detection of interspecies hybridisation in Chondrichthyes: hybrids and hybrid offspring between Australian (Carcharhinus tilstoni) and common (C. limbatus) blacktip shark found in an Australian fishery.Crossref | GoogleScholarGoogle Scholar |

Morin, P. A., Martein, K. K., and Taylor, B. L. (2009). Assessing the statistical power of SNPs for population structure and conservation studies. Molecular Ecology Resources 9, 66–73.
Assessing the statistical power of SNPs for population structure and conservation studies.Crossref | GoogleScholarGoogle Scholar | 21564568PubMed |

Mourier, J., and Planes, S. (2013). Direct genetic evidence for reproductive philopatry and associated fine-scale migrations in female blacktip reef sharks (Carcharhinus melanopterus) in French Polynesia. Molecular Ecology 22, 201–214.
Direct genetic evidence for reproductive philopatry and associated fine-scale migrations in female blacktip reef sharks (Carcharhinus melanopterus) in French Polynesia.Crossref | GoogleScholarGoogle Scholar | 23130666PubMed |

Mourier, J., Mills, S. C., and Planes, S. (2013). Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus. Journal of Fish Biology 82, 979–993.
Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus.Crossref | GoogleScholarGoogle Scholar | 23464555PubMed |

Musick, J. A., Harbin, M. M., and Compagno, L. J. V. (2004). Historical zoogeography of the Selachii. In ‘Biology of Sharks and Their Relatives’. (Eds J. C. Carrier, J. A Musick, and M. R. Heithaus.) Chapter 2, pp 42–105. (CRC Press: Boca Raton, FL.)

Musyl, M. K., Domeier, M. L., Nasby-Lucas, N., Brill, R. W., McNaughton, L. M., Swimmer, J. Y., Lutcavage, M. S., Wilson, S. G., Galuardi, B., and Liddle, J. B. (2011). Performance of pop-up satellite archival tags. Marine Ecology Progress Series 433, 1–28.
Performance of pop-up satellite archival tags.Crossref | GoogleScholarGoogle Scholar |

Naylor, G. J. P., Caira, J. N., Jensen, K., Rosana, K. A. M., White, W. T., and Last, P. R. (2012). A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History 2012, 1–262.
A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology.Crossref | GoogleScholarGoogle Scholar |

Nazareno, A. G., Bemmels, J. B., Dick, C. W., and Lohmann, L. G. (2017). Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources 17, 1136–1147.
Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species.Crossref | GoogleScholarGoogle Scholar | 28078808PubMed |

Otlet (2020). Sample sharing made simple. Available at: https://otlet.io/ [accessed 13 February 2020].

Ovenden, J. (2007). Populations structure of blacktip sharks. In ‘Northern Australian Sharks and Rays: the Sustainability of Target and Bycatch Species, Phase 2’. (Eds J. Salini, R. McAuley, S. Blaber, R. Buckworth, J. Chidlow, N. Gribble, J. Ovenden, S. Peverell, R. Pillans, J. Stevens, I. Stobutzki, C. Tarca, and T. Walker.) pp. 41–58. (CSIRO Marine and Atmospheric Research.)

Ovenden, J. R., Kashiwagi, T., Broderick, D., Giles, J., and Salini, J. (2009). The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evolutionary Biology 9, 40.
The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago.Crossref | GoogleScholarGoogle Scholar | 19216767PubMed |

Ovenden, J. R., Morgan, J. A. T., Street, R., Tobin, A., Simpfendorfer, C., Macbeth, W., and Welch, D. (2011). Negligible evidence for regional genetic population structure for two shark species Rhizoprionodon acutus (Rüppell, 1837) and Sphyrna lewini (Griffith and Smith, 1834) with contrasting biology. Marine Biology 158, 1497–1509.
Negligible evidence for regional genetic population structure for two shark species Rhizoprionodon acutus (Rüppell, 1837) and Sphyrna lewini (Griffith and Smith, 1834) with contrasting biology.Crossref | GoogleScholarGoogle Scholar |

Ovenden, J. R., Dudgeon, C., Feutry, P., Feldheim, K., and Maes, G. E. (2019). Genetics and genomics for fundamental and applied research on elasmobranchs. In ‘Shark Research: Emerging Technologies and Applications for the Field and Laboratory’. (Eds J. C. Carrier, M. R. Heithaus, and C. A. Simpfendorfer.) Chapter 13, pp 235–248. (CRC Press: Boca Raton, FL.)

Papastamatiou, Y. P., Friedlander, A. M., Caselle, J. E., and Lowe, C. G. (2010). Long-term movement patterns and trophic ecology of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll. Journal of Experimental Marine Biology and Ecology 386, 94–102.
Long-term movement patterns and trophic ecology of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll.Crossref | GoogleScholarGoogle Scholar |

Pazmiño, D. A., Maes, G. E., Green, M. E., Simpfendorfer, C. A., Hoyos-Padilla, E. M., Duffy, C. J., Meyer, C. G., Kerwath, S. E., Salinas-de-Leon, P., and van Herwerden, L. (2018). Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity 120, 407–421.
Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers.Crossref | GoogleScholarGoogle Scholar | 29321624PubMed |

Pedraza-Marrón, C. D. R., Silva, R., Deeds, J., Van Belleghem, S. M., Mastretta-Yanes, A., Domínguez-Domínguez, O., Rivero-Vega, R. A., Lutackas, L., Murie, D., Parkyn, D., Bullock, L. H., Foss, K., Ortiz-Zuazaga, H., Narvaez-Barandica, J., Acero, A., Gomes, G., and Betancur, R. R (2019). Genomics overrules mitochondrial DNA, siding with morphology on a controversial case of species delimitation. Proceedings of the Royal Society B 286, 20182924.
Genomics overrules mitochondrial DNA, siding with morphology on a controversial case of species delimitation.Crossref | GoogleScholarGoogle Scholar |

Phillips, N. M., Chaplin, J. A., Peverell, S. C., and Morgan, D. L. (2017). Contrasting population structures of three Pristis sawfishes with different patterns of habitat use. Marine and Freshwater Research 68, 452–460.
Contrasting population structures of three Pristis sawfishes with different patterns of habitat use.Crossref | GoogleScholarGoogle Scholar |

Portnoy, D. S., McDowell, J. R., Heist, E. J., Musick, J. A., and Graves, J. E. (2010). World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Molecular Ecology 19, 1994–2010.
World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus.Crossref | GoogleScholarGoogle Scholar | 20406387PubMed |

Portnoy, D. S., Puritz, J. B., Hollenbeck, C. M., Gelsleichter, J., Chapman, D., and Gold, J. R. (2015). Selection and sex-biased dispersal: the influence of philopatry on adaptive variation. Molecular Ecology 24, 5877–5885.
Selection and sex-biased dispersal: the influence of philopatry on adaptive variation.Crossref | GoogleScholarGoogle Scholar | 26518727PubMed |

Reiss, H., Hoarau, G., Dickey-Collas, M., and Wolff, W. J. (2009). Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish and Fisheries 10, 361–395.
Genetic population structure of marine fish: mismatch between biological and fisheries management units.Crossref | GoogleScholarGoogle Scholar |

Robbins, W. D. (2006). Abundance, demography and population structure of the grey reef shark (Carcharhinus amblyrhynchos) and the white tip reef shark (Triaenodon obesus) (Fam. Charcharhinidae). Ph.D. Thesis, James Cook University, Townsville.

Rogers, P. J., Huveneers, C., Goldsworthy, S. D., Mitchell, J. G., and Seuront, L. (2013). Broad-scale movements and pelagic habitat of the dusky shark Carcharhinus obscurus off southern Australia determined using pop-up satellite archival tags. Fisheries Oceanography 22, 102–112.
Broad-scale movements and pelagic habitat of the dusky shark Carcharhinus obscurus off southern Australia determined using pop-up satellite archival tags.Crossref | GoogleScholarGoogle Scholar |

Ryman, N., and Palm, S. (2006). POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology Notes 6, 600–602.
POWSIM: a computer program for assessing statistical power when testing for genetic differentiation.Crossref | GoogleScholarGoogle Scholar |

Schultz, J. K., Feldheim, K. A., Gruber, S. H., Ashley, M. V., McGovern, T. M., and Bowen, B. W. (2008). Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion). Molecular Ecology 17, 5336–5348.
Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion).Crossref | GoogleScholarGoogle Scholar | 19121001PubMed |

Seki, T., Taniuchi, T., Nakano, H., and Shimizu, M. (1998). Age, growth and reproduction of the oceanic whitetip shark from the Pacific Ocean. Fisheries Science 64, 14–20.
Age, growth and reproduction of the oceanic whitetip shark from the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Sembiring, A., Pertiwi, N. P. D., Mahardini, A., Wulandari, R., Kurniasih, E. M., Kuncoro, A. W., Cahyani, N. K. D., Anggoro, A. W., Ulfa, M., Madduppa, H., Carpenter, K. E., Barber, P. H., and Mahardika, G. N. (2015). DNA barcoding reveals targeted fisheries for endangered sharks in Indonesia. Fisheries Research 164, 130–134.
DNA barcoding reveals targeted fisheries for endangered sharks in Indonesia.Crossref | GoogleScholarGoogle Scholar |

Simpfendorfer, C. A. (1999). Demographic analysis of the dusky shark fishery in southwestern Australia. In ‘Life in the Slow Lane. Ecology and Conservation of Long-Lived Marine Animals’. (Ed. J. A. Musick.) pp. 149–160. American Fisheries Society Symposium No. 23.

Simpfendorfer, C.A. (2003). SSG Australia and Oceania Regional Workshop, March 2003. Rhizoprionodon acutus.

Skomal, G. B., and Natanson, L. J. (2003). Age and growth of the blue shark (Prionace glauca) in the North Atlantic Ocean. Fishery Bulletin 101, 627–639.

Smith, P. J. (1986). Low genetic variation in sharks (Chondricthyes). Copeia 1986, 202–207.
Low genetic variation in sharks (Chondricthyes).Crossref | GoogleScholarGoogle Scholar |

Sodre, D., Rodrigues-Filho, L. F. S., Souza, R. F. C., Rego, P. S., Schneider, H., Sampaio, I., and Vallinoto, M. (2012). Inclusion of South American samples reveals new population structuring of the blacktip shark (Carcharhius limbatus) in the western Atlantic. Genetics and Molecular Biology 35, 752–760.
Inclusion of South American samples reveals new population structuring of the blacktip shark (Carcharhius limbatus) in the western Atlantic.Crossref | GoogleScholarGoogle Scholar | 23271935PubMed |

SOSF (2020). Save Our Seas Foundation: Shark Share Global. Available at: https://saveourseas.com/project/shark-share-global/ [accessed 13 February 2020].

Spaet, J. L., Jabado, R. W., Henderson, A. C., Moore, A. B., and Berumen, M. L. (2015). Population genetics of four heavily exploited shark species around the Arabian Peninsula. Ecology and Evolution 5, 2317–2332.
Population genetics of four heavily exploited shark species around the Arabian Peninsula.Crossref | GoogleScholarGoogle Scholar | 26120422PubMed |

Springer, S. (1960). Natural history of the sandbar shark, Eulamia milberti. U.S. Fish and Wildlife Service Fishery Bulletin 61, 1–38.

Stow, A. J., Zenger, K., Briscoe, D., Gillings, M., Peddemors, V., Otway, N., and Harcourt, R. (2006). Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations. Biology Letters 2, 308–311.
Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations.Crossref | GoogleScholarGoogle Scholar |

Taguchi, M., King, J. R., Wetklo, M., Withler, R. E., and Yokawa, K. (2015). Population genetic structure and demographic history of Pacific blue sharks (Prionace glauca) inferred from mitochondrial DNA analysis. Marine and Freshwater Research 66, 267–275.
Population genetic structure and demographic history of Pacific blue sharks (Prionace glauca) inferred from mitochondrial DNA analysis.Crossref | GoogleScholarGoogle Scholar |

Teh, L. C. L., and Pauly, D. (2018). Who brings in the fish? The relative contribution of small-scale and industrial fisheries to food security in Southeast Asia. Frontiers in Marine Science 5, 1–9.
Who brings in the fish? The relative contribution of small-scale and industrial fisheries to food security in Southeast Asia.Crossref | GoogleScholarGoogle Scholar |

Tillett, B. J., Meekan, M. G., Field, I. C., Hua, Q., and Bradshaw, C. J. A. (2011). Similar life history traits in bull (Carcharhinus leucas) and pig-eye (C. amboinensis) sharks. Marine and Freshwater Research 62, 850–860.
Similar life history traits in bull (Carcharhinus leucas) and pig-eye (C. amboinensis) sharks.Crossref | GoogleScholarGoogle Scholar |

Tillett, B. J., Meekan, M. G., Broderick, D., Field, I. C., Cliff, G., and Ovenden, J. R. (2012a). Pleistocene isolation, secondary introgression and restricted contemporary gene flow in the pig-eye shark, Carcharhinus amboinensis across northern Australia. Conservation Genetics 13, 99–115.
Pleistocene isolation, secondary introgression and restricted contemporary gene flow in the pig-eye shark, Carcharhinus amboinensis across northern Australia.Crossref | GoogleScholarGoogle Scholar |

Tillett, B. J., Meekan, M. G., Field, I. C., Thorburn, D. C., and Ovenden, J. R. (2012b). Evidence for reproductive philopatry in the bull shark Carcharhinus leucas. Journal of Fish Biology 80, 2140–2158.
Evidence for reproductive philopatry in the bull shark Carcharhinus leucas.Crossref | GoogleScholarGoogle Scholar | 22551174PubMed |

Vella, N., and Vella, A. (2017). Population genetics of the deep-sea bluntnose sixgill shark, Hexanchus griseus, revealing spatial genetic heterogeneity. Marine Genomics 36, 25–32.
Population genetics of the deep-sea bluntnose sixgill shark, Hexanchus griseus, revealing spatial genetic heterogeneity.Crossref | GoogleScholarGoogle Scholar | 28602510PubMed |

Veríssimo, A., Sampaio, Í., McDowell, J. R., Alexandrino, P., Mucientes, G., Queiroz, N., da Silva, C., Jones, C. S., and Noble, L. R. (2017). World without borders – genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca). Ecology and Evolution 7, 4768–4781.
World without borders – genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca).Crossref | GoogleScholarGoogle Scholar | 28690806PubMed |

Vignaud, T., Clua, E., Mourier, J., Maynard, J., and Planes, S. (2013). Microsatellite analyses of blacktip reef sharks (Carcharhinus melanopterus) in a fragmented environment show structured clusters. PloS One 8, e61067.
Microsatellite analyses of blacktip reef sharks (Carcharhinus melanopterus) in a fragmented environment show structured clusters.Crossref | GoogleScholarGoogle Scholar | 23585872PubMed |

Vignaud, T. M., Mourier, J., Maynard, J. A., Leblois, R., Spaet, J., Clua, E., Neglia, V., and Planes, S. (2014). Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range. Molecular Ecology 23, 5193–5207.
Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range.Crossref | GoogleScholarGoogle Scholar | 25251515PubMed |

Waples, R. S. (1998). Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. The Journal of Heredity 89, 438–450.
Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species.Crossref | GoogleScholarGoogle Scholar |

Wetherbee, B. M., Crow, G. L., and Lowe, C. G. (1997). Distribution, reproduction and diet of the gray reef shark Carcharhinus amblyrhynchos in Hawaii. Marine Ecology Progress Series 151, 181–189.
Distribution, reproduction and diet of the gray reef shark Carcharhinus amblyrhynchos in Hawaii.Crossref | GoogleScholarGoogle Scholar |

White, W. T. (2007). Catch composition and reproductive biology of whaler sharks (Carcharhiniformes: Carcharhinidae) caught by fisheries in Indonesia. Journal of Fish Biology 71, 1512–1540.
Catch composition and reproductive biology of whaler sharks (Carcharhiniformes: Carcharhinidae) caught by fisheries in Indonesia.Crossref | GoogleScholarGoogle Scholar |

White, W. T. (2012). A redescription of Carcharhinus dussumieri and C. sealei, with resurrection of C. coatesi and C. tjutjot as valid species (Chondrichthyes: Carcharhinidae). Zootaxa 3241, 1–34.
A redescription of Carcharhinus dussumieri and C. sealei, with resurrection of C. coatesi and C. tjutjot as valid species (Chondrichthyes: Carcharhinidae).Crossref | GoogleScholarGoogle Scholar |

White, W. T., and Kyne, P. M. (2010). The status of chondrichthyan conservation in the Indo‐Australasian region. Journal of Fish Biology 76, 2090–2117.
The status of chondrichthyan conservation in the Indo‐Australasian region.Crossref | GoogleScholarGoogle Scholar | 20557656PubMed |

White, W. T., and Potter, I. C. (2004). Habitat partitioning among four elasmobranch species in nearshore, shallow waters of a subtropical embayment in Western Australia. Marine Biology 145, 1023–1032.
Habitat partitioning among four elasmobranch species in nearshore, shallow waters of a subtropical embayment in Western Australia.Crossref | GoogleScholarGoogle Scholar |

White, W. T., and Sommerville, E. (2010). Elasmobranchs of tropical marine ecosystems. In ‘Sharks and Their Relatives. II: Biodiversity, Adaptive Physiology, and Conservation’. (Eds D. W. Sims, J. C. Carrier, J. A. Musick, and M. R. Heithaus.) pp. 159–239. (CRC Press: Boca Raton, FL.)

Whitney, N. M., Robbins, W. D., Schultz, J. K., Bowen, B. W., and Holland, K. N. (2012). Oceanic dispersal in a sedentary reef shark (Triaenodon obesus): genetic evidence for extensive connectivity without a pelagic larval stage. Journal of Biogeography 39, 1144–1156.
Oceanic dispersal in a sedentary reef shark (Triaenodon obesus): genetic evidence for extensive connectivity without a pelagic larval stage.Crossref | GoogleScholarGoogle Scholar |

Williams, M., Cook, E., van der Kaars, S., Barrows, T., Shulmeister, J., and Kershaw, P. (2009). Glacial and deglacial climatic patterns in Australia and surrounding regions from 35000 to 10000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews 28, 2398–2419.
Glacial and deglacial climatic patterns in Australia and surrounding regions from 35000 to 10000 years ago reconstructed from terrestrial and near-shore proxy data.Crossref | GoogleScholarGoogle Scholar |

Willing, E. M., Dreyer, C., and Van Oosterhout, C. (2012). Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One 7, e42649.
Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers.Crossref | GoogleScholarGoogle Scholar | 22905157PubMed |