Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

Phylogenetic and biogeographic insights into the reproductive evolution and taxonomy of Australasian Teucrium (Lamiaceae)

Trevor C. Wilson https://orcid.org/0000-0002-9026-0521 A * and Elizabeth A. James https://orcid.org/0000-0001-9191-5553 B
+ Author Affiliations
- Author Affiliations

A Plant Discovery and Evolution Research, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia.

B Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Vic. 3004, Australia.


Handling Editor: Daniel Murphy

Australian Systematic Botany 38, SB24027 https://doi.org/10.1071/SB24027
Submitted: 23 August 2024  Accepted: 9 June 2025  Published: 7 July 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Reproductive systems in Lamiaceae typically consist of bilabiate zygomorphic flowers and dry mericarp fruit, therefore examining deviations from this strategy contributes to our understanding of evolution. Teucrium L. (Lamiaceae: Ajugoideae) is easily recognised by the unilabiate flower. The genus is cosmopolitan but most speciose in the Mediterranean region. Previous phylogenetic analysis showing three segregate genera nested within Teucrium raises questions about the taxon’s dispersal throughout the region and the distinctive morphological changes. We conducted phylogenomic analyses of nuclear genes sequenced by targeted enrichment (Angiosperms353) for all Australasian species, phrase names and outgroups (39 total). Results show high support for most species clades and unequivocally place most ‘unknowns’ in context with other described taxa. Australasian Teucrium constitute at least two distantly related clades. The most speciose, with a crown age of 10.2–14.8 Ma, is widespread across Australia and includes an arid-adapted lineage that evolved actinomorphic corollas and fleshy fruits. The second clade of three eastern Australian species has a crown age of 5.9–12.2 Ma that corresponds best with dispersal associated with the Sunda–Sahul collision. Our results highlight repeated colonisation of Teucrium in Australia and corresponding shifts towards animal dispersal that took place as early as c. 9.2 Ma.

Keywords: Ajugoideae, Angiosperms353, dispersal, GAP, Genomics for Australian Plants, HybPiper, morphological adaptation, target bait capture sequencing.

References

Abadi S, Azouri D, Pupko T, Mayrose I (2019) Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications 10, 934.
| Crossref | Google Scholar | PubMed |

Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany 120, 183-194.
| Crossref | Google Scholar | PubMed |

Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, McDonnell A, Pokorny L, Tate JA, Wicke S, Wickett NJ (2021) Exploring Angiosperms353: an open, community toolkit for collaborative phylogenomic research on flowering plants. American Journal of Botany 108, 1059-1065.
| Crossref | Google Scholar | PubMed |

Baum DA, Small RL, Wendel JF (1998) Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Systematic Biology 47, 181-207.
| Crossref | Google Scholar | PubMed |

Bean AR (2018) A conspectus of Teucrium (Lamiaceae) in Queensland. Austrobaileya 37, 3-18.
| Crossref | Google Scholar |

Benson D, McDougall L (2004) Ecology of Sydney plant species: part 3: dicotyledon families Cabombaceae to Eupomatiaceae. Cunninghamia 4, 217-431.
| Google Scholar |

Blackall WE, Grieve BJ (1965) ‘How to Know Western Australian Wildflowers, Part 3.’ (University of Western Australia Press: Perth, WA, Australia)

Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology 17, 341-346.
| Crossref | Google Scholar | PubMed |

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
| Crossref | Google Scholar | PubMed |

Bonn S (2004) Dispersal of plants in the Central European landscape – dispersal processes and assessment of dispersal potential exemplified for endozoochory. PhD dissertation, Naturwissenschaftlichen Fakultät, Biologie und Vorklinische Medizin, Universität Regensburg, Germany.

Bouman F, Meeuse ADJ (1992) Dispersal in Labiatae. In ‘Advances in Labiate Science’. (Eds R Harley, R Reynolds) pp 193–202. (Royal Botanic Gardens: Kew, UK)

Brundrett MC, Ladd PG, Keighery GJ (2024) Pollination strategies are exceptionally complex in southwestern Australia – a globally significant ancient biodiversity hotspot. Australian Journal of Botany 72, BT23007.
| Crossref | Google Scholar |

Byrne M, Yeates DK, Kearney JL, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398-4417.
| Crossref | Google Scholar | PubMed |

Candela RG, Rosselli S, Bruno M, Fontana G (2021) A review of the phytochemistry, traditional uses and biological activities of the essential oils of genus Teucrium. Planta Medica 87, 432-479.
| Crossref | Google Scholar | PubMed |

Cantino PD (1992) Evidence for a polyphyletic origin of the Labiatae. Annals of the Missouri Botanic Gardens 79, 361-379.
| Crossref | Google Scholar |

Castellanos MC, Wilson P, Thomson JD (2003) Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 57, 2742-2752.
| Crossref | Google Scholar | PubMed |

Codd LE (1977) The South African species of Teucrium (Lamiaceae). Bothalia 12, 177-179.
| Crossref | Google Scholar |

Conn BJ (1999) Teucrium pilbaranum (Labiatae), a new species from the Pilbara, Western Australia. Telopea 8, 299-303.
| Crossref | Google Scholar |

Conn BJ (2002) Teucrium micranthum (Labiatae), a new species from Queensland, Australia. Telopea 9, 803-807.
| Crossref | Google Scholar |

Conn BJ (2006) Teucrium thieleanum (Labiatae), a new species from Victoria, Australia. Telopea 11, 135-140.
| Crossref | Google Scholar |

Crayn DM, Costion C, Harrington MG (2015) The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. Journal of Biogeography 42, 11-24.
| Crossref | Google Scholar |

Cronk Q, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. Journal of Experimental Biology 59, 715-727.
| Crossref | Google Scholar | PubMed |

Drew BT, Sytsma KJ (2012) Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae). American Journal of Botany 99, 933-953.
| Crossref | Google Scholar | PubMed |

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
| Crossref | Google Scholar | PubMed |

Duan Q, Goodale E, Quan RC (2014) Bird fruit preferences match the frequency of fruit colours in tropical Asia. Scientific Reports 4, 5627.
| Crossref | Google Scholar | PubMed |

Faegri K, van der Pijl L (1979) ‘The Principles of Pollination Ecology.’ (Pergamon: New York, NY, USA)

Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108, 537-555.
| Crossref | Google Scholar |

GBIF Secretariat (2023a) Teucrium corymbosum R.Br. In ‘GBIF Backbone Taxonomy’. (GBIF Secretariat: Copenhagen, Denmark) Available at https://www.gbif.org/species/7308603 [Verified 13 January 2025]

GBIF Secretariat (2023b) Teucrium viscidum Blume. In ‘GBIF Backbone Taxonomy’. (GBIF Secretariat: Copenhagen, Denmark) Available at https://www.gbif.org/species/7307951 [Verified 13 January 2025]

Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU (2020) Comparing adaptive radiations across space, time, and taxa. Journal of Heredity 111, 1-20.
| Crossref | Google Scholar | PubMed |

Gong Y-B, Huang S-Q (2009) Floral symmetry: pollinator-mediated stabilizing selection on flower size in bilateral species. Philosophical Transactions of the Royal Society – B. Biological Sciences 276, 4013-4020.
| Crossref | Google Scholar | PubMed |

Green AJ, Baltzinger C, Lovas-Kiss Á (2022) Plant dispersal syndromes are unreliable, especially for predicting zoochory and long-distance dispersal. Oikos 2022, e08327.
| Crossref | Google Scholar |

Greuter W, Burdet HM, Long G (1986) Med-Checklist Conservatoire et Jardin Botanique de la Ville de Genève. Genéve 3, 366-380.
| Google Scholar |

Gustafsson OJR, Al Bkhetan Z, Francis R, Manos S (2023) Enabling national step changes in bioinformatics through ABLeS, the Australian BioCommons Leadership Share. Zenodo 2023, ver. 3.0 [Program details, published 15 November 2023].
| Crossref | Google Scholar |

Hall R (2002) Cenozoic geological and plate tectonic evolution of Southeast Asia and the Southwest Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353-434.
| Crossref | Google Scholar |

Hall R (2009) Southeast Asia’s changing palaeogeography. Blumea 54, 148-161.
| Crossref | Google Scholar |

Harborne JB, Tomás-Barberán FA, Williams CA, Gil MI (1986) A chemotaxonomic study of flavonoids from European Teucrium species. Phytochemistry 25, 2811-2816.
| Crossref | Google Scholar |

Harley RM, Atkins S, Budantsev A, Cantino PD, Conn B, Grayer R, Harley MM, Kok R, Krestovskaja T, Morales R, Paton AJ, Ryding O, Upson T (2004) Lamiaceae. In ‘The Families and Genera of Vascular Plants, Vol. 7’. (Ed JW Kadereit) pp. 167–276. (Springer: Heidelberg, Germany)

Holzmeyer L, Hauenschild F, Muellner‐Riehl AN (2023) Sunda–Sahul floristic exchange and pathways into the Southwest Pacific: new insights from wet tropical forest trees. Journal of Biogeography 50, 1257-1270.
| Crossref | Google Scholar |

Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68-73.
| Crossref | Google Scholar |

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254-267.
| Crossref | Google Scholar | PubMed |

Jackson C, McLay T, Schmidt-Lebuhn AN (2021) hybpiper-rbgv and yang-and-smith-rbgv: containerization and additional options for assembly and paralog detection in target enrichment data. BioRxiv 2021, 2021.11.08.467817 [Preprint, published 10 November 2021].
| Crossref | Google Scholar |

Jackson C, McLay T, Schmidt-Lebuhn AN (2023) hybpiper‐nf and paragone‐nf: containerization and additional options for target capture assembly and paralog resolution. Applications in Plant Sciences 11, e11532.
| Crossref | Google Scholar | PubMed |

Jaríc S, Mitrović M, Pavlović P (2020) Ethnobotanical Features of Teucrium Species. In ‘Teucrium Species: Biology and Applications’. (Ed M Stanković) pp. 111–142. (Springer: Cham, Switzerland)

Johnson KA (2013) Are there pollination syndromes in the Australian epacrids (Ericaceae: Styphelioideae)? A novel statistical method to identify floral traits per syndrome. Annals of Botany 112, 141-149.
| Crossref | Google Scholar | PubMed |

Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, Zerega NJC, Wickett NJ (2016) HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4, 1600016.
| Crossref | Google Scholar | PubMed |

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK, Baker WJ, Wickett NJ (2019) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68, 594-606.
| Crossref | Google Scholar | PubMed |

Joyce EM, Schmidt-Lebuhn AN, Orel HK, Nge FJ, Anderson BM, Hammer TA, McLay TGB (2024) Navigating phylogenetic conflict and evolutionary inference in plants with target capture data. Australian Systematic Botany 38, SB24011.
| Crossref | Google Scholar |

Kästner A (1978) Beiträge zur Wuchsformenanalyse und systematischen Gliederung von Teucrium L. – I. Die Infloreszenzen und Blüten. Flora 167, 485-514 [In German].
| Crossref | Google Scholar |

Kästner A (1989) Übersicht zur systematischen Gliederung der Gattung Teucrium L. Biocosme Mésogéen 6, 63-77 [In German].
| Google Scholar |

Knorr G, Lohmann G (2014) Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience 7, 376-381.
| Crossref | Google Scholar |

Kooyman RM, Morley RJ, Crayn DM, Joyce EM, Rossetto M, Slik JF, Strijk JS, Su T, Yap JYS, Wilf P (2019) Origins and assembly of Malesian rainforests. Annual Review of Ecology, Evolution, and Systematics 50, 119-143.
| Crossref | Google Scholar |

Ladiges PY, Marks CE, Nelson G (2011) Biogeography of Nicotiana section Suaveolentes (Solanaceae) reveals geographical tracks in arid Australia. Journal of Biogeography 38, 2066-2077.
| Crossref | Google Scholar |

Lei B, Cui J, Newman C, Buesching CD, Xie Z, Macdonald DW, Zhou Y (2021) Seed dispersers shape the pulp nutrients of fleshy-fruited plants. Proceedings of the Royal Society of London – B. Biological Sciences 288, 20210817.
| Crossref | Google Scholar | PubMed |

Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E (2003) Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. International Journal of Plant Science 164, 917-932.
| Crossref | Google Scholar |

Li YQ, Dressler S, Zhang DX, Renner SS (2009) More Miocene dispersal between Africa and Asia – the case of Bridelia (Phyllanthaceae). Systematic Botany 34, 521-529.
| Crossref | Google Scholar |

Li ZZ, Lehtonen S, Martins K, Gichira AW, Wu S, Li W, Hu GW, Liu Y, Zou CY, Wang QF, Chen JM (2020) Phylogenomics of the aquatic plant genus Ottelia (Hydrocharitaceae): implications for historical biogeography. Molecular Phylogenetics and Evolution 152, 106939.
| Crossref | Google Scholar | PubMed |

Marin PD, Petković B, Duletić S (1994) Nutlet sculpturing of selected Teucrium species (Lamiaceae): a character of taxonomic significance. Plant Systematics and Evolution 192, 199-214.
| Crossref | Google Scholar |

Mazer SJ, Wheelwright NT (1993) Fruit size and shape: Allometry at different taxonomic levels in bird-dispersed plants. Evolutionary Ecology 7, 556-575.
| Crossref | Google Scholar |

Merrett MF (2005) Gynodioecy in Teucridium parvifolium (Verbenaceae), a threatened, small-leaved shrub from New Zealand. New Zealand Journal of Botany 43, 613-617.
| Crossref | Google Scholar |

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188-1195.
| Crossref | Google Scholar | PubMed |

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020a) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530-1534.
| Crossref | Google Scholar |

Minh BQ, Hahn MW, Lanfear R (2020b) New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37, 2727-2733.
| Crossref | Google Scholar |

Mittelbach M, Yurkov AM, Nocentini D, Nepi M, Weigend M, Begerow D (2015) Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecology 15, 2.
| Crossref | Google Scholar | PubMed |

Morales-Briones DF, Gehrke B, Huang CH, Liston A, Ma H, Marx HE, Tank DC, Yang Y (2022) Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy events in Alchemilla s.l. (Rosaceae). Systematic Biology 71, 190-207.
| Crossref | Google Scholar |

Munir AA (1976) A taxonomic revision of the genus Spartothamnella (Chloanthaceae). Journal of the Adelaide Botanic Gardens 1, 3-25.
| Google Scholar |

Munir AA (1991) A taxonomic revision of the genus Oncinocalyx F.Muell. (Verbenaceae). Journal of the Adelaide Botanic Gardens 14, 77-84.
| Google Scholar |

Navarro T (2020) Systematics and biogeography of the genus Teucrium (Lamiaceae). In ‘Teucrium Species: Biology and Applications’. (Ed M Stanković) pp. 1–38. (Springer: Cham, Switzerland)

Navarro T, El Oualidi J (1999) Flower and life strategy diversity in Teucrium L. (Lamiaceae). Acta Botanica Malacitana 24, 63-75.
| Crossref | Google Scholar |

Navarro T, El Oualidi J (2000) Synopsis of Teucrium L. (Labiatae) in the Mediterranean region and surrounding areas. Flora Mediterranea 10, 349-363.
| Google Scholar |

Petanidou TH (1996) Labiatae: a key family for wild bees and the pollination ecology in Mediterranean phryganic communities. Lamiales Newsletter 4, 4-6.
| Google Scholar |

Pole M (2014) The Miocene climate in New Zealand: Estimates from paleobotanical data. Palaeontologia Electronica 17, 1-79.
| Crossref | Google Scholar |

Proctor MCF, Yeo P, Lack A (1996) ‘The Natural History of Pollination.’ (Timber: Portland, OR, USA)

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901-904.
| Crossref | Google Scholar | PubMed |

Raven PH (1972) Why are bird-visited flowers predominantly red? Evolution 26, 674.
| Crossref | Google Scholar | PubMed |

Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61, 539-673.
| Crossref | Google Scholar |

Rodríguez-Sambruno C, Narbona E, del Valle JC, Valido A (2024) Bird–flower colour on islands supports the bee-avoidance hypothesis. Functional Ecology 38, 600-611.
| Crossref | Google Scholar |

Rose JP, Xiang CL, Sytsma KJ, Drew BT (2022) A timeframe for mint evolution: towards a better understanding of trait evolution and historical biogeography in Lamiaceae. Botanical Journal of the Linnean Society 200, 15-38.
| Crossref | Google Scholar |

Rose JP, Wiese J, Pauley N, Dirmenci T, Celep F, Xiang C-L, Drew BT (2023) East Asian–North American disjunctions and phylogenetic relationships within subtribe Nepetinae (Lamiaceae). Molecular Systematics and Evolution 187, 107873.
| Crossref | Google Scholar | PubMed |

Roy T, Lindqvist C (2015) New insights into evolutionary relationships within the subfamily Lamioideae (Lamiaceae) based on pentatricopeptide repeat (PPR) nuclear DNA sequences. American Journal of Botany 102, 1721-1735.
| Crossref | Google Scholar | PubMed |

Ruhfel BR, Bove CP, Philbrick CT, Davis CC (2016) Dispersal largely explains the Gondwanan distribution of the ancient tropical clusioid plant clade. American Journal of Botany 103, 1117-1128.
| Crossref | Google Scholar | PubMed |

Ruiters AK, Tilney PM, van Vuurenb SF, Viljoen AM, Kamatou GPP, van Wyk BE (2016) The anatomy, ethnobotany, antimicrobial activity and essential oil composition of southern African species of Teucrium (Lamiaceae). South African Journal of Botany 102, 175-185.
| Crossref | Google Scholar |

Ryding O (1995) Pericarp structure and phylogeny of the Lamiaceae-Verbenaceae-complex. Plant Systematics and Evolution 198, 101-141.
| Crossref | Google Scholar |

Ryding O (1998) Teucrium (Lamiaceae) in NE tropical Africa. Edinburgh Journal of Botany 55, 209-220.
| Crossref | Google Scholar |

Salmaki Y, Kattari S, Heubl G, Bräuchler C (2016) Phylogeny of non-monophyletic Teucrium (Lamiaceae: Ajugoideae): implications for character evolution and taxonomy. Taxon 65, 805-822.
| Crossref | Google Scholar |

Satthaphorn J, Paton AJ, Zuntini AR, Cowan RS, Leeratiwong C (2023) Phylogeny and infrageneric classification of Clerodendrum (Lamiaceae). Botanical Journal of the Linnean Society 204, 103-136.
| Crossref | Google Scholar |

Sayyari E, Mirarab S (2018) Testing for polytomies in phylogenetic species trees using quartet frequencies. Genes 9, 132.
| Crossref | Google Scholar | PubMed |

Schemske DW, Bradshaw HD, Jr (1999) Pollinator preference and the evolution of floral traits in monkey flowers (Mimulus). Proceeding of the National Academy of Sciences 96, 11910-11915.
| Crossref | Google Scholar | PubMed |

Simpson L, Cantrill D, Byrne M, Allnutt TR, King GJ, Lum M, Al Bkhetan Z, Andrew RL, Baker WJ, Barrett MD, Batley J, Berry O, Binks RM, Bragg J, Broadhurst L, Brown G, Bruhl JJ, Edwards RJ, Ferguson S, Forest F, Gustafsson J, Hammer TA, Holmes GD, Jackson CJ, James EA, Jones A, Kersey PJ, Leitch IJ, Maurin O, McLay TJB, Murphy DJ, Nargar K, Nauheimer L, Sauquet H, Schmidt-Lebuhn AN, Shepherd KA, Syme AE, Waycott M, Wilson TC, Crayn DM (2024) The Genomics for Australian Plants (GAP) framework initiative – developing genomic resources for understanding the evolution and conservation of the Australian flora. Australian Systematic Botany 38, SB24022.
| Crossref | Google Scholar |

Slimp M, Williams LD, Hale H, Johnson MG (2021) On the potential of Angiosperms353 for population genomic studies. Applications in Plant Sciences 9, e11419.
| Crossref | Google Scholar | PubMed |

Smith SA, O’Meara BC (2012) treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690.
| Crossref | Google Scholar | PubMed |

Smith SA, Moore MJ, Brown JW, Yang Y (2015) Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15, 150.
| Crossref | Google Scholar | PubMed |

Smith SA, Brown JW, Walker JF (2018) So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS One 13, e0197433.
| Crossref | Google Scholar | PubMed |

Sniderman JMK, Pillans B, O’Sullivan PB, Kershaw AP (2007) Climate and vegetation in southeastern Australia respond to Southern Hemisphere insolation forcing in the late Pliocene-early Pleistocene. Geology 35, 41-44.
| Crossref | Google Scholar |

Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annual Review of Plant Biology 60, 561-588.
| Crossref | Google Scholar | PubMed |

Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annual Review of Ecology and Systematics 1, 307-326.
| Crossref | Google Scholar |

Suchard MA, Rambaut A (2009) Many-core algorithms for statistical phylogenetics. Bioinformatics 25, 1370-1376.
| Crossref | Google Scholar | PubMed |

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4, vey016.
| Crossref | Google Scholar |

Temeles EJ, Rankin AG (2000) Effect of the lower lip of Monarda didyma on pollen removal by hummingbirds. Canadian Journal of Botany 78, 1164-1168.
| Crossref | Google Scholar |

Thiele KR, Shepherd KA (2014) Spartothamnella canescens (Lamiaceae, Chloantheae), a new species from Western and Central Australia, with notes on the status of S. sp. Helena & Aurora Range. Nuytsia 24, 177-185.
| Google Scholar |

Toelken HR (1985) Notes on Teucrium (Labiatae). Journal of the Adelaide Botanic Gardens 7, 295-300.
| Google Scholar |

Toelken HR, Cunningham DD (2008) Teucrium reidii (Labiatae): a new species from north-western South Australia. Journal of the Adelaide Botanic Gardens 22, 97-100.
| Google Scholar |

Trewick SA, Paterson AM, Campbell HJ (2007) Hello New Zealand. Journal of Biogeography 34, 1-6.
| Crossref | Google Scholar |

Valenta K, Nevo O (2020) The dispersal syndrome hypothesis: how animals shaped fruit traits, and how they did not. Functional Ecology 34, 1158-1169.
| Crossref | Google Scholar |

Valido A, Dupont YL, Olesen JM (2004) Bird–flower interactions in the Macaronesian islands. Journal of Biogeography 31, 1945-1953.
| Crossref | Google Scholar |

van der Pijl L (1972) Functional consideration and observation on the flowers of some Lamiaceae. Blumea 20, 93-103.
| Google Scholar |

Vazačová K, Münzbergová Z (2014) Dispersal ability of island endemic plants: What can we learn using multiple dispersal traits? Flora 209, 530-539.
| Crossref | Google Scholar |

von Mueller F (1853) Diagnoses et descriptiones plantarum novarum, quas in Nova Hollandia australi praecipue in regionibus interioribus. Linnaea: ein Journal für die Botanik in ihrem ganzen Umfange, oder Beiträge zur Pflanzenkunde 25, 426.
| Google Scholar |

Walker JD, Geissman JW (2022) Geologic Time Scale, ver. 6.0, updated October 2022. (Geological Society of America) 10.1130/2022.CTS006C

Walsh NG, O’Brien E (2013) Gynodioecy in Teucrium racemosum (Lamiaceae). Muelleria 31, 77-80.
| Crossref | Google Scholar |

Webb CJ, Pearson PE (1993) The evolution of approach herkogamy from protandry in New Zealand Gentiana (Gentianaceae). Plant Systematics and Evolution 186, 187-191.
| Crossref | Google Scholar |

Wege J, Davis R (2020) Better the devil you know: Teucrium diabolicum (Lamiaceae), a new species from mining tenements in the Coolgardie bioregion. Nuytsia 31, 129-133.
| Crossref | Google Scholar |

Westerkamp C, Classen-Bockhoff R (2007) Bilabiate flowers: the ultimate response to bees? Annals of Botany 100, 361-374.
| Crossref | Google Scholar | PubMed |

Wilson TC, Conn BJ, Henwood MJ (2017) Great expectations: correlations between pollinator assemblages and floral characters in Lamiaceae. International Journal of Plant Sciences 178, 170-187.
| Crossref | Google Scholar |

Xiang C-L, Zhao F, Cantino PD, Drew BT, Li B, Liu E-D, Soltis DE, Soltis PS, Peng H (2018) Molecular systematics of Caryopteris (Lamiaceae) and its allies with reference to the molecular phylogeny of subfamily Ajugoideae. Taxon 67, 376-394.
| Crossref | Google Scholar |

Yang Y, Smith SA (2014) Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution 31, 3081-3092.
| Crossref | Google Scholar | PubMed |

Yao G, Drew BT, Yi TS, Yan HF, Yuan YM, Ge XJ (2016) Phylogenetic relationships, character evolution and biogeographic diversification of Pogostemon s.l. (Lamiaceae). Molecular Phylogenetics and Evolution 98, 184-200.
| Crossref | Google Scholar | PubMed |

Yu X-Q, Maki M, Drew BT, Paton AJ, Li H-W, Zhao J-L, Conran JG, Li J (2014) Phylogeny and historical biogeography of Isodon (Lamiaceae): rapid radiation in south-west China and Miocene overland dispersal into Africa. Molecular Phylogenetics and Evolution 77, 183-194.
| Crossref | Google Scholar | PubMed |

Yuan YM, Wohlhauser S, Möller M, Klackenberg J, Callmander MW, Küpfer P (2005) Phylogeny and biogeography of Exacum (Gentianaceae): a disjunctive distribution in the Indian Ocean Basin resulted from long distance dispersal and extensive radiation. Systematic Biology 54, 21-34.
| Crossref | Google Scholar | PubMed |

Žerdoner Čalasan A, Hammen S, Sukhorukov AP, McDonald JT, Brignone NF, Böhnert T, Kadereit G (2022) From continental Asia into the world: global historical biogeography of the saltbush genus Atriplex (Chenopodieae, Chenopodioideae, Amaranthaceae). Perspectives in Plant Ecology Evolution and Systematics 54, 125660.
| Crossref | Google Scholar |

Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153.
| Crossref | Google Scholar | PubMed |

Zhao F, Chen Y-P, Salmaki Y, Drew BT, Wilson TC, Scheen A-C, Celep F, Bräuchler C, Bendiksby M, Wang Q, Min D-Z, Peng H, Olmstead RG, Li B, Xiang C-L (2021) An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biology 19, 2.
| Crossref | Google Scholar | PubMed |

Zhou L, Su YCF, Thomas DC, Saunders RMK (2012) Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). Journal of Biogeography 39, 322-335.
| Crossref | Google Scholar |

Zlatić N, Stanković M (2020) Ethnobotanical features of Teucrium species. In ‘Teucrium Species: Biology and Applications’. (Ed M Stanković) pp. 391–411 (Springer: Cham, Switzerland)

Zona S (2017) Fruit and seed dispersal of Salvia L. (Lamiaceae): a review of the evidence. Botanical Review 83, 195-212.
| Crossref | Google Scholar |

Zung JL, Forrest JRK, Castellanos MC, Thomson JD (2015) Bee- to bird-pollination shifts in Penstemon: effects of floral-lip removal and corolla constriction on the preferences of free-foraging bumble bees. Evolutionary Ecology 29, 341-354.
| Crossref | Google Scholar |

Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, Epitawalage N, et al. (2024) Phylogenomics and the rise of the angiosperms. Nature 629, 843-850.
| Crossref | Google Scholar | PubMed |