Tracking movement, home range, and microhabitat use in a small terrestrial breeding frog using harmonic direction-finding technology
Jordy Groffen

A
B
C
Abstract
Tracking the movements of an animal increases our understanding of its behaviour and ecological preferences.
This study aimed to assess the movements, home range, nesting sites, and microhabitat use of a very small, cryptic, terrestrial microhylid frog species (Austrochaperina robusta) in an upland rainforest, during the breeding season.
We used harmonic direction-finding (HDF) technology with ultra-light harnesses/tag combinations of two sizes (small 0.023 g and large 0.033 g) to track male A. robusta. These are substantially lighter than all tag/harness combinations previously used in amphibian tracking studies and represented a small proportion (1.8–2.58%) of the body mass of the very small study species, A. robusta (1.27 ± 0.20 g).
Both tag sizes were effective for tracking, and tag size did not change the distance moved or time until an individual was found. Males did not move far between surveys (average 58.2 ± 24.7 cm) and had small home ranges (0.46 ± 0.20 m2) over the 5-day tracking period.
Our study highlights that HDF can be used to track very small vertebrates in structurally complex environments. This method has the potential to fill important knowledge gaps regarding the ecology of small terrestrial breeding amphibians, providing insights that can inform conservation measures and population assessments for vulnerable species.
Keywords: amphibian, conservation, harmonic direction-finder, Microhylids, nursery frogs, oviposition site, site fidelity, telemetry, tracking.
References
Altobelli JT, Dickinson KJM, Godfrey SS, Bishop PJ (2022) Methods in amphibian biotelemetry: two decades in review. Austral Ecology 47, 1382-1395.
| Crossref | Google Scholar |
Anstis M, Parker F, Hawkes T, Morris I, Richards SJ (2011) Direct development in some Australopapuan microhylid frogs of the genera Austrochaperina, Cophixalus and Oreophryne (Anura: Microhylidae) from northern Australia and Papua New Guinea. Zootaxa 3052, 1-50.
| Crossref | Google Scholar |
Ayala C, Ramos AG, Merlo Á, Zambrano L (2019) Microhabitat selection of axolotls, Ambystoma mexicanum, in artificial and natural aquatic systems. Hydrobiologia 828, 11-20.
| Crossref | Google Scholar |
Bartelt PE, Peterson CR (2000) A description and evaluation of a plastic belt for attaching radio transmitters to western toads (Bufo boreas). Northwestern Naturalist 81, 122-128.
| Crossref | Google Scholar |
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1-48.
| Crossref | Google Scholar |
Beck KB, Loretto MC, Ringler M, Hödl W, Pašukonis A (2017) Relying on known or exploring for new? movement patterns and reproductive resource use in a tadpole-transporting frog. PeerJ 2017, 1-24.
| Crossref | Google Scholar |
Borzée A, Kim YI, Kim K, Yikweon J (2018) Methodological development for harmonic direction finder tracking in salamanders. Herpetological Conservation and Biology 13, 473-478.
| Google Scholar |
Borzée A, Choi Y, Kim YE, Jablonski PG, Jang Y (2019) Interspecific variation in seasonal migration and brumation behaviour in two closely related species of treefrogs. Frontiers in Ecology and Evolution 7, 55.
| Crossref | Google Scholar |
Burt WH (1943) Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24, 346-352.
| Crossref | Google Scholar |
Fischer MT, Ringler M, Ringler E, Pašukonis A (2020) Reproductive behavior drives female space use in a sedentary Neotropical frog. PeerJ 8, e8920.
| Crossref | Google Scholar |
Fraser KC, Davies KTA, Davy CM, Ford AT, Flockhart DTT, Martins EG (2018) Tracking the conservation promise of movement ecology. Frontiers in Ecology and Evolution 6, 150.
| Crossref | Google Scholar |
Garrido-Priego M, Monge-Velázquez M, Whitworth A, Gomez-Mestre I (2024) Home range and notes about social interactions in the poison frog Phyllobates vittatus (Anura: Dendrobatidae). Evolutionary Ecology 38, 193-204.
| Crossref | Google Scholar |
Gerking SD (1953) Evidence for the concepts of home range and territory in stream fishes. Ecoloy 34, 347-365.
| Crossref | Google Scholar |
Geyle HM, Hoskin CJ, Bower DS, Catullo R, Clulow S, Driessen M, Daniels K, Garnett ST, Gilbert D, Heard GW, Hero JM, Hines HB, Hoffmann EP, Hollis G, Hunter DA, Lemckert F, Mahony M, Marantelli G, McDonald KR, Mitchell NJ, Newell D, Roberts JD, Scheele BC, Scroggie M, Vanderduys E, Wassens S, West M, Woinarski JCZ, Gillespie GR (2021) Red hot frogs: Identifying the Australian frogs most at risk of extinction. Pacific Conservation Biology 28(3), 211-223.
| Crossref | Google Scholar |
Gillespie GR, Roberts JD, Hunter D, Hoskin CJ, Alford RA, Heard GW, Hines H, Lemckert F, Newell D, Scheele BC (2020) Status and priority conservation actions for Australian frog species. Biological Conservation 247, 108543.
| Crossref | Google Scholar |
Grant JWA (1993) Whether or not to defend? The influence of resource distribution. Marine Behaviour and Physiology 23, 137-153.
| Crossref | Google Scholar |
Groffen J, Rush ER, Hoskin CJ (2024) Calling locations and courtship calls of the frogs Austrochaperina robusta Fry, 1912 and Pseudophryne covacevichae Ingram & Corben, 1994 in northern Australia. Herpetology Notes 17, 315-321.
| Google Scholar |
Gupta A, Dilkina B, Morin DJ, Fuller AK, Royle JA, Sutherland C, Gomes CP (2019) Reserve design to optimize functional connectivity and animal density. Conservation Biology 33, 1023-1034.
| Crossref | Google Scholar | PubMed |
Hoskin CJ (2004) Australian microhylid frogs (Cophixalus and Austrochaperina): phylogeny, taxonomy, calls, distributions and breeding biology. Australian Journal of Zoology 52, 237-269.
| Crossref | Google Scholar |
Hoskin CJ (2012) Two new frog species (Microhylidae: Cophixalus) from the Australian Wet Tropics region, and redescription of Cophixalus ornatus. Zootaxa 3271, 1-16.
| Crossref | Google Scholar |
Koch AJ, Hero JM (2007) The relationship between environmental conditions and activity of the giant barred frog (Mixophyes iteratus) on the Coomera River, south-east Queensland. Australian Journal of Zoology 55, 89-95.
| Crossref | Google Scholar |
Langkilde T, Alford RA (2002) The tail wags the frog: harmonic radar transponders affect movement behavior in Litoria lesueuri. Journal of Herpetology 36, 711-715.
| Crossref | Google Scholar |
Lemckert F, Brassil T (2000) Movements and habitat use of the endangered giant barred river frog (Mixophyes iteratus) and the implications for its conservation in timber production forests. Biological Conservation 96, 177-184.
| Crossref | Google Scholar |
Leskovar C, Sinsch U (2005) Harmonic direction finding: a novel tool to monitor the dispersal of small-sized anurans. Herpetological Journal 15, 173-180.
| Google Scholar |
Ludwig G, Sinsch U, Pelster B (2013) Migratory behaviour during autumn and hibernation site selection in common frogs (Rana temporaria) at high altitude. The Herpetological Journal 23, 121-124.
| Google Scholar |
Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy A, Aowphol A, Jean A, Sosa-Bartuano Á, Fong GA, de Silva A, Fouquet A, Angulo A, Kidov AA, Muñoz Saravia A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B, Tjaturadi B, Martínez Rivera CC, Vásquez Almazán CR, Señaris C, Chandramouli SR, Strüssmann C, Cortez Fernández CF, Azat C, Hoskin CJ, Hilton-Taylor C, Whyte DL, Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ, Nagombi E, Najafi-Majd E, Quah ESH, Bolaños F, Xie F, Brusquetti F, Álvarez FS, Andreone F, Glaw F, Castañeda FE, Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán G, Ortega-Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailović J, Yang JH, Jianping J, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO, Gururaja KV, Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH, Meegaskumbura M, Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yánez-Muñoz MH, Scherz MD, Rödel MO, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M, Kouamé NGG, García N, Gonwouo NL, Burrowes PA, Imbun PY, Wagner P, Kok PJR, Joglar RL, Auguste RJ, Brandão RA, Ibáñez R, von May R, Hedges SB, Biju SD, Ganesh SR, Wren S, Das S, Flechas SV, Ashpole SL, Robleto-Hernández SJ, Loader SP, Incháustegui SJ, Garg S, Phimmachak S, Richards SJ, Slimani T, Osborne-Naikatini T, Abreu-Jardim TPF, Condez TH, De Carvalho TR, Cutajar TP, Pierson TW, Nguyen TQ, Kaya U, Yuan Z, Long B, Langhammer P, Stuart SN (2023) Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308-314.
| Crossref | Google Scholar | PubMed |
Makinson JC, Woodgate JL, Reynolds A, Capaldi EA, Perry CJ, Chittka L (2019) Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Scientific Reports 9, 1-11.
| Crossref | Google Scholar |
Mascanzoni D, Wallin H (1986) The harmonic radar: a new method of tracing insects in the field. Ecological Entomology 11, 387-390.
| Crossref | Google Scholar |
McGowan J, Beger M, Lewison RL, Harcourt R, Campbell H, Priest M, Dwyer RG, Lin HY, Lentini P, Dudgeon C, McMahon C, Watts M, Possingham HP (2017) Integrating research using animal-borne telemetry with the needs of conservation management. Journal of Applied Ecology 54, 423-429.
| Crossref | Google Scholar |
Merino-Viteri AR (2018) The vulnerability of microhylid frogs, Cophixalus spp., to climate change in the Australian Wet Tropics. PhD thesis. James Cook University. Available at http://doi.org/10.4225/28/5b0c8d84e69b2
Miller ND, Yoder TJ, Manoukis NC, Carvalho LAFN, Siderhurst MS (2022) Harmonic radar tracking of individual melon flies, Zeugodacus cucurbitae, in Hawaii: determining movement parameters in cage and field settings. PLoS ONE 17, e0276987.
| Crossref | Google Scholar |
Mohr CO (1947) Table of equivalent populations of North American small mammals. American Midland Naturalist 37, 223-249.
| Google Scholar |
Moore A, Siderhurst M (2022) Proposal for detecting coconut rhinoceros beetle breeding sites using harmonic radar. Research Ideas and Outcomes 8, e86422.
| Crossref | Google Scholar |
Moseley KR, Castleberry SB (2005) Assessment of subcutaneously implanted reflector tags for relocating mole salamanders (Ambystoma talpoideum). Georgia Journal of Science 63, 91-96.
| Google Scholar |
Narvaes P, Rodrigues MT (2005) Visual communication, reproductive behavior, and home range of Hylodes dactylocinus (Anura, Leptodactylidae). Phyllomedusa 4, 147-158.
| Crossref | Google Scholar |
Odum EP, Kuenzler EJ (1955) Measurement of territory and home range size in birds. Ornithology 72, 128-137.
| Crossref | Google Scholar |
Parsons ECM (2016) Why IUCN should replace “data deficient” conservation status with a precautionary “assume threatened” status—A cetacean case study. Frontiers in Marine Science 3, 193.
| Crossref | Google Scholar |
Pašukonis A, Loretto MC, Landler L, Ringler M, Hödl W (2014) Homing trajectories and initial orientation in a Neotropical territorial frog, Allobates femoralis (Dendrobatidae). Frontiers in Zoology 11, 29.
| Crossref | Google Scholar |
Pašukonis A, Loretto MC, Rojas B (2019) How far do tadpoles travel in the rainforest? Parent-assisted dispersal in poison frogs. Evolutionary Ecology 33, 613-623.
| Crossref | Google Scholar | PubMed |
Pellet J, Rechsteiner L, Skrivervik AK, Zürcher JF, Perrin N (2006) Use of the harmonic direction finder to study the terrestrial habitats of the European tree frog (Hyla arborea). Amphibia Reptilia 27, 138-142.
| Crossref | Google Scholar |
Ramírez PA, Bell BD, Germano JM, Bishop PJ, Nelson NJ (2017) Tracking a small cryptic amphibian with fluorescent powders. New Zealand Journal of Ecology 41, 134-138.
| Crossref | Google Scholar |
Rittenhouse TAG, Altnether TT, Semlitsch RD (2006) Fluorescent powder pigments as a harmless tracking method for ambystomatids and ranids. Herpetological Review 37, 188-191.
| Google Scholar |
Rowley JJL, Alford RA (2007) Techniques for tracking amphibians: the effects of tag attachment, and harmonic direction finding versus radio telemetry. Amphibia Reptilia 28, 367-376.
| Crossref | Google Scholar |
Sapsford SJ, Roznik EA, Alford RA, Schwarzkopf L (2014) Visible implant elastomer marking does not affect short-term movements or survival rates of the treefrog Litoria rheocola. Herpetologica 70, 23-33.
| Crossref | Google Scholar |
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676-682.
| Crossref | Google Scholar | PubMed |
Siderhurst MS, Murman KM, Kaye KT, Wallace MS, Cooperband MF (2024) Radio telemetry and harmonic radar tracking of the spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae). Insects 15, 17.
| Crossref | Google Scholar |
Valenzuela-Sánchez A, Harding G, Cunningham AA, Chirgwin C, Soto-Azat C (2014) Home range and social analyses in a mouth brooding frog: testing the coexistence of paternal care and male territoriality. Journal of Zoology 294, 215-223.
| Crossref | Google Scholar |
Wickham H (2016) ‘ggplot2: Elegant Graphics for Data Analysis’. (Springer-Verlag: New York) Available at https://ggplot2.tidyverse.org
Williams YM, Williams SE, Alford RA, Waycott M, Johnson CN (2006) Niche breadth and geographical range: ecological compensation for geographical rarity in rainforest frogs. Biology Letters 2, 532-535.
| Crossref | Google Scholar | PubMed |
Wollenberg KC, Harvey J (2010) First assessment of the male territorial vocal behaviour of a Malagasy leaf litter frog (Gephyromantis thelenae). Herpetology Notes 3, 141-150.
| Google Scholar |
Zweifel RG (1985) Australian frogs of the family Microhylidae. Bulletin of the American Museum of Natural History 182, 265-388 Available at https://digitallibrary.amnh.org/items/e13048b0-5fc6-46bf-b5da-78d4a07bfd87.
| Google Scholar |