Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

If you are hidden, how will I know what you feel?: the role of tarantula burrows in buffering the external climatic conditions

Leonela Schwerdt https://orcid.org/0000-0002-2512-0725 A * , Nelson Ferretti A B and Ana Elena de Villalobos A B
+ Author Affiliations
- Author Affiliations

A Centro de Recursos Naturales Renovables de la Zona Semiárida, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Buenos Aires, Argentina.

B Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.


Handling Editor: Lyn Hinds

Wildlife Research 52, WR24202 https://doi.org/10.1071/WR24202
Submitted: 7 December 2024  Accepted: 15 June 2025  Published: 3 July 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Thermal refuges, such as burrows, play a crucial role in the survival of ectothermic species by buffering environmental temperature fluctuations. The burrowing tarantula Grammostola vachoni inhabits rocky outcrops in central grassland of Argentina. Considering the importance of refuges for ectotherms, the significant differences between microhabitat and external environmental conditions, and the limited information available on tarantula habitats, understanding microclimate variations within burrows is crucial.

Aims

We investigated the temperature and humidity dynamics inside the burrows of G. vachoni in relation to the surrounding environment. We characterized microhabitat temperature and humidity in adjacent habitats, evaluated the stability of environmental conditions inside and outside the burrow, and analyzed these findings in relation to the known thermal limits of the species.

Methods

We conducted the study in the Ventania System (Argentina), measuring temperature and humidity throughout an entire year. Environmental parameters were recorded using a HOBO data logger, whereas burrow parameters were measured using iButton data loggers placed inside burrows occupied by adult females of G. vachoni. We also analyzed the stability of environmental and burrow conditions, the distribution of extreme temperatures, humidity variability, and the rates of cooling and heating.

Key results

We found that burrows exhibit greater thermal and hydric stability than the external environment, with temperatures inside remaining above 0°C during winter. Cooling and heating rates inside the burrows were slower, which allowed the spiders to avoid rapid and harmful temperature fluctuations. Humidity levels inside the burrows were consistently higher than outside, particularly during the warmer months.

Conclusions

Our results highlighted the importance of monitoring microhabitat conditions not only during the species’ activity periods, because burrows play a determinant role in other phases of the life cycle. Whereas burrows provide some level of thermal refuge, the increasing frequency and intensity of heatwaves could challenge the species’ thermal resilience. The fact that burrow temperatures can exceed both optimal temperature and critical thermal maximum, particularly in the warmer months, raises concerns about the suitability of these refuges in the face of climate change.

Implications

Understanding these microhabitat conditions is essential to grasp the fine-scale relationship between the organism and its environment.

Keywords: Argentina, burrows, cooling/heating rates, data loggers, long-term monitoring, tarantula, Theraphosidae, thermal ecology.

References

Aisenberg A, González M, Laborda Á, Postiglioni R, Simó M (2011) Spatial distribution, burrow depth and temperature: implications for the sexual strategies in two Allocosa wolf spiders. Studies on Neotropical Fauna and Environment 46(2), 147-152.
| Crossref | Google Scholar |

Albín A, Simó M, Aisenberg A (2016) Characterisation of burrow architecture under natural conditions in the sand-dwelling wolf spider Allocosa brasiliensis. Journal of Natural History 50(3-4), 201-209.
| Crossref | Google Scholar |

Alfaro C, Figueroa DP, Torres H, Veloso C, Venegas F, Canals L, Canals M (2013a) Effect of thermal acclimation on preferred temperatures in two mygalomorph spiders inhabiting contrasting habitats. Physiological Entomology 38(1), 20-25.
| Crossref | Google Scholar |

Alfaro C, Veloso C, Torres-Contreras H, Solis R, Canals M (2013b) Thermal niche overlap of the corner recluse spider Loxosceles laeta (Araneae; Sicariidae) and its possible predator, the spitting spider Scytodes globula (Scytodidae). Journal of Thermal Biology 38(8), 502-507.
| Crossref | Google Scholar |

Álvarez L, Perafán C, Pérez-Miles F (2016) At what time, for what distance, and for how long does the tarantula Eupalaestrus weijenberghi (Araneae: Theraphosidae) leave its burrow during the mating season? Arachnology 17(3), 152-154.
| Crossref | Google Scholar |

Amat-Valero M, Calero-Torralbo MA, Václav R, Valera F (2014) Cavity types and microclimate: implications for ecological, evolutionary, and conservation studies. International Journal of Biometeorology 58, 1983-1994.
| Crossref | Google Scholar | PubMed |

Anthony SE, Buddle CM, Høye TT, Sinclair BJ (2019) Thermal limits of summer-collected Pardosa wolf spiders (Araneae: Lycosidae) from the Yukon Territory (Canada) and Greenland. Polar Biology 42(11), 2055-2064.
| Crossref | Google Scholar |

Bakken GS, Angilletta MJ, Jr (2014) How to avoid errors when quantifying thermal environments. Functional Ecology 28(1), 96-107.
| Crossref | Google Scholar |

Brandt EE, Roberts KT, Williams CM, Elias DO (2020) Low temperatures impact species distributions of jumping spiders across a desert elevational cline. Journal of Insect Physiology 122, 104037.
| Crossref | Google Scholar |

Cloudsley-Thompson JL (1991) ‘Ecophysiology of desert arthropods and reptiles.’ (Springer: Berlin, Germany)

Cubillos C, Cáceres JC, Villablanca C, Villarreal P, Baeza M, Cabrera R, Graether SP, Veloso C (2018) Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae). Journal of Thermal Biology 74, 133-139.
| Crossref | Google Scholar | PubMed |

Dorgan KM (2015) The biomechanics of burrowing and boring. Journal of Experimental Biology 218(2), 176-183.
| Crossref | Google Scholar |

Dowd WW, King FA, Denny MW (2015) Thermal variation, thermal extremes and the physiological performance of individuals. Journal of Experimental Biology 218(12), 1956-1967.
| Crossref | Google Scholar |

Ferretti N, Pompozzi G, Copperi S, Pérez-Miles F, González A (2012) Mygalomorph spider community of a natural reserve in a hilly system in central Argentina. Journal of Insect Science 12, 31.
| Crossref | Google Scholar |

Figueroa DP, Sabat P, Torres-Contreras H, Veloso C, Canals M (2010) Participation of book lungs in evaporative water loss in Paraphysa parvula, a migalomorph spider from Chilean Andes. Journal of Insect Physiology 56, 731-735.
| Crossref | Google Scholar | PubMed |

Gómez Carella DS, Speziale K, Lambertucci S (2019) Estado del conocimiento en ecología y conservación de los roquedales de la Argentina: una revisión. Ecología Austral 29, 315-328.
| Crossref | Google Scholar |

Guerrero EL, Apodaca MJ (2022) The smallest area shaped a big problem: a revision of the placement of the Ventania sky island in the biogeography of South America. Biological Journal of the Linnean Society 137(2), 200-215.
| Crossref | Google Scholar |

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software for education and data analysis. Palaeontologia Electronica 4(1), 9.
| Google Scholar |

Hill RW, Wyse GA, Anderson MA (2016) ‘Animal physiology’, 4th edn. (Sinauer Associates: Sunderland, MA, USA)

Kato N, Takasago M, Omasa K, Miyashita T (2008) Coadaptive changes in physiological and biophysical traits related to thermal stress in web spiders. Naturwissenschaften 95, 1149-1153.
| Crossref | Google Scholar | PubMed |

Kristensen MJ, Frangi JL (2015) Vegetación casmofítica y mesoclimas de afloramientos rocosos en Ventania (Buenos Aires, Argentina). Boletín de la Sociedad Argentina de Botánica 50, 35-46.
| Crossref | Google Scholar |

Lapinski W (2020) Tarantulas and their habitats. In ‘New World Tarantulas: taxonomy, biogeography and evolutionary biology of Theraphosidae’. (Ed. F Pérez-Miles) pp. 191–236 (Springer)

Martin TL, Huey RB (2008) Why ‘suboptimal’ is optimal: Jensen’s inequality and ectotherm thermal preferences. The American Naturalist 171, E102-E118.
| Crossref | Google Scholar | PubMed |

Mason LD, Tomlinson S, Withers PC, Main BY (2013) Thermal and hygric physiology of Australian burrowing mygalomorph spiders (Aganippe spp.). Journal of Comparative Physiology B 183, 71-82.
| Crossref | Google Scholar |

Michalijos MP (2019) Estudio del riesgo de incendio forestal en un sector de la Comarca de la Sierra de la Ventana utilizando geotecnologías. Tesis de Posgrado, Universidad Nacional del Sur, Bahía Blanca, Argentina.

Moore D, Stow A, Kearney MR (2018) Under the weather?–the direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. Journal of Animal Ecology 87(3), 660-671.
| Crossref | Google Scholar | PubMed |

M’rabet SM, Henaut Y, Sepulveda A, Rojo R, Calmé S, Geissen V (2007) Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae). Journal of Natural History 41, 1025-1033.
| Crossref | Google Scholar |

Nowakowski AJ, Peaden JM, Tuberville TD, Buhlmann KA, Todd BD (2020) Thermal performance curves based on field movements reveal context-dependence of thermal traits in a desert ectotherm. Landscape Ecology 35, 893-906.
| Crossref | Google Scholar |

Padilla M, Colley MA, Reading RP (2018) Growth rates of laboratory reared honduran curly hair tarantulas (Brachypelma albopilosum) in response to power feeding. Arachnology 17(7), 325-327.
| Crossref | Google Scholar |

Pérez-Miles F (Ed.) (2020) ‘New world tarantulas: taxonomy, biogeography and evolutionary biology of Theraphosidae.’ Zoological Monographs, vol. 6. (Springer: Geneva, Switzerland) 10.1007/978-3-030-48644-0

Pérez CA, Frangi JL (2000) Grassland biomass dynamics along an altitudinal gradient in the Pampa. Journal of Range Management 53(5), 518-528.
| Crossref | Google Scholar |

Pike DA, Webb JK, Shine R (2012) Hot mothers, cool eggs: nest-site selection by egg-guarding spiders accommodates conflicting thermal optima. Functional Ecology 26(2), 469-475.
| Crossref | Google Scholar |

Pike DA, Roznik EA, Webb JK, Shine R (2019) Life history and ecology of the elegant snake-eyed skink (Cryptoblepharus pulcher) in south-eastern Australia. Australian Journal of Zoology 67(1), 51-58.
| Crossref | Google Scholar |

Pincebourde S, Casas J (2019) Narrow safety margin in the phyllosphere during thermal extremes. Proceedings of the National Academy of Sciences USA 116, 5588-5596.
| Crossref | Google Scholar |

Pincebourde S, Woods HA (2020) There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Current Opinion in Insect Science 41, 63-70.
| Crossref | Google Scholar | PubMed |

Punzo F (1991) Intraspecific variation in responses to thermal stress in the tarantula, Dugesiella echina Chamberlin (Orthognatha, Theraphosidae). Bulletin of the British Arachnological Society 8(9), 277-283.
| Google Scholar |

Punzo F, Henderson L (1999) Aspects of the natural history and behavioural ecology of the tarantula spider Aphonopelma hentzi (Girard, 1854) (Orthognatha, Theraphosidae). Bulletin of the British Arachnological Society 11, 121-128.
| Google Scholar |

R Core Team (2023) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria) Available at https://www.R-project.org/

Raya-García E, Arteaga-Tinoco I (2024) Rural occupancy in a montane burrowing snake: the importance of thermal and microhabitat resources during the rainy season. Biologia 79, 2071-2078.
| Crossref | Google Scholar |

Sas-Kovács ÉH, Sas-Kovács I (2020) Can I borrow your burrow? Use of the burrows of Geolycosa vultuosa (Araneae: Lycosidae) by Podarcis tauricus (Squamata: Lacertidae). Biharean Biologist 14(2), 127-129.
| Google Scholar |

Schwerdt L, Elena de Villalobos AE, Miles FP (2018) Spiders as potential bioindicators of mountain grasslands health: the Argentine tarantula Grammostola vachoni (Araneae, Theraphosidae). Wildlife Research 45(1), 64-71.
| Crossref | Google Scholar |

Schwerdt L, de Villalobos AE, Pérez-Miles F (2019) Factors that affect the occupancy, activity and distribution patterns of Grammostola vachoni, an endemic tarantula from the austral mountains of Argentina. Journal of Insect Conservation 23(5–6), 967-975.
| Crossref | Google Scholar |

Schwerdt L, de Villalobos AE, Ferretti N, Pérez-Miles F (2021a) Development, growth and allometry in a cohort of the tarantula Grammostola vachoni (Araneae: Theraphosidae). Zoologischer Anzeiger 293, 37-45.
| Crossref | Google Scholar |

Schwerdt L, de Villalobos AE, Ferretti N (2021b) Warming is here: using locomotor performance to infer thermal parameters and vulnerability for an endemic Argentinean tarantula Grammostola vachoni. Ecological Entomology 46(3), 525-532.
| Crossref | Google Scholar |

Schwerdt L, Copperi S, Pompozzi G, Ferretti N (2022) The walking male: activity, locomotor performance and influence of climate in movement of males of an endangered tarantula (Grammostola vachoni) over the reproductive season. Biological Journal of the Linnean Society 135(4), 708-721.
| Crossref | Google Scholar |

Schwerdt L, de Villalobos AE, Ferretti N (2024) Ecological niche modelling and thermal parameters to assess the prevalence of an endemic tarantula: the endurance of Grammostola vachoni Schiapelli & Gerschman, 1961. Journal of Insect Conservation 28, 737-748.
| Crossref | Google Scholar |

Segura Hernández LM (2023) Assessing physiological and behavioral responses of a small ectotherm, Dactylochelifer silvestris Hoff 1956 (Pseudoscorpiones: Cheliferidae), to microclimate change. PhD thesis, University of Nebraska, USA.

Shillington C (2001) Thermal ecology and energetics of a Texas tarantula. Thesis, University of Oklahoma, USA.

Shillington C (2002) Thermal ecology of male tarantulas (Aphonopelma anax) during the mating season. Canadian Journal of Zoology 80(2), 251-259.
| Crossref | Google Scholar |

Shillington C (2020) Physiological ecology of tarantulas: thermoregulation, metabolism, and performance traits. In ‘New World Tarantulas: taxonomy, biogeography and evolutionary biology of Theraphosidae’. (Ed. F Pérez-Miles) pp. 297–318. (Springer)

Shillington C, McEwen B (2006) Activity of juvenile tarantulas in and around the maternal burrow. Journal of Arachnology 34(1), 261-265.
| Crossref | Google Scholar |

Shorthouse DJ, Marples TG (1980) Observations on the burrow and associated behaviour of the arid-zone scorpion Urodacus yaschenkoi (Birula). Australian Journal of Zoology 28(4), 581-590.
| Crossref | Google Scholar |

Sinclair BJ (2001) Field ecology of freeze tolerance: interannual variation in cooling rates, freeze–thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93(2), 286-293.
| Crossref | Google Scholar |

Sinclair BJ, Coello Alvarado LE, Ferguson LV (2015) An invitation to measure insect cold tolerance: methods, approaches, and workflow. Journal of Thermal Biology 53, 180-197.
| Crossref | Google Scholar | PubMed |

Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CDG, Marshall DJ, Helmuth BS, Huey RB (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters 19(11), 1372-1385.
| Crossref | Google Scholar | PubMed |

Smith VR (2016) An unexpected journey: the biogeography and conservation ecology of the trapdoor spider genus Cantuaria Hogg, 1902. PhD thesis, Lincoln University.

Staines MN, Booth DT, Laloë J-O, Tibbetts IR, Hays GC (2022) The ecological importance of the accuracy of environmental temperature measurements. Biology Letters 18(8), 20220263.
| Crossref | Google Scholar |

Steves I, Berliner P, Pinshow B (2021) Air temperature and humidity at the bottom of desert wolf spider burrows are not affected by surface conditions. Insects 12(10), 943.
| Crossref | Google Scholar |

Taucare-Ríos A, Veloso C, Bustamante RO (2017) Microhabitat selection in the sand recluse spider (Sicarius thomisoides): the effect of rock size and temperature. Journal of Natural History 51(37–38), 2199-2210.
| Crossref | Google Scholar |

Taylor WA, Skinner JD (2004) Adaptations of the aardvark for survival in the Karoo: a review. Transactions of the Royal Society of South Africa 59(2), 105-108.
| Crossref | Google Scholar |

van den Berg FT, Thompson MB, Hochuli DF (2015) When hot rocks get hotter: behavior and acclimatization mitigate exposure to extreme temperatures in a spider. Ecosphere 6(5), 1-17.
| Crossref | Google Scholar |

Whittington-Jones GM, Bernard RTF, Parker DM (2011) Aardvark burrows: a potential resource for animals in arid and semi-arid environments. African Zoology 46(2), 362-370.
| Crossref | Google Scholar |

Williams JD, Di Pietro D, Vera D (2022) ‘Anfibios y reptiles de las Sierras de Ventania.’ (Fundación de Historia Natural Félix de Azara: Ciudad Autónoma de Buenos Aires, Argentina)

Woodman JD (2008) Living in a shallow burrow under a rock: gas exchange and water loss in an Australian scorpion. Journal of Thermal Biology 33(5), 280-286.
| Crossref | Google Scholar |

Woods HA, Dillon ME, Pincebourde S (2015) The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. Journal of Thermal Biology 54, 86-97.
| Crossref | Google Scholar | PubMed |

Zar JH (1999) ‘Biostatistical analysis’, 4th edn. (Pearson Education: New Delhi, India)