Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE (Open Access)

Healthy or unhealthy? Risk factors and biomarkers associated with exposure to infectious agents in wild lowland tapirs (Tapirus terrestris)

Renata Carolina Fernandes-Santos https://orcid.org/0000-0001-8530-1395 A B C * , Kristin Warren A D , Rebecca Vaughan-Higgins A D E , Emília Patrícia Medici C F G and Mieghan Bruce https://orcid.org/0000-0003-3176-2094 A B
+ Author Affiliations
- Author Affiliations

A School of Veterinary Medicine, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

B Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.

C International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Tapir Specialist Group (TSG), Campo Grande, Mato Grosso do Sul 79046-150, Brazil.

D Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.

E Perth Zoo, South Perth, WA 6151, Australia.

F Lowland Tapir Conservation Initiative (LTCI), Instituto de Pesquisas Ecológicas (IPÊ), Campo Grande, Mato Grosso do Sul 79046-150, Brazil.

G Escola Superior de Conservação Ambiental e Sustentabilidade (ESCAS-IPÊ), Nazaré Paulista, São Paulo 12960-000, Brazil.


Handling Editor: Jordan Hampton

Wildlife Research 52, WR25080 https://doi.org/10.1071/WR25080
Submitted: 15 May 2025  Accepted: 11 September 2025  Published: 2 October 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Context

Links between tapir health and environmental conditions are well-established, but substantial knowledge gaps on biological and environmental causes of ill-health remain. Furthermore, anthropogenic impacts and climate change effects on disease patterns are escalating issues.

Aims

Our study aimed to build on earlier research on wild lowland tapir (Tapirus terrestris) health and investigate risk factors and potential consequences associated with infectious agents.

Methods

Between 2008 and 2018, 174 samples from 115 wild lowland tapirs across two contrasting locations in Brazil were screened for four infectious agents (bluetongue virus, porcine parvovirus, Leptospira interrogans serovar Pomona, and Trypanosoma terrestris), along with clinical and haematological findings. Generalised linear models and boosted regression trees were applied to evaluate associations with risk factors, likely disease consequences, and meteorological conditions.

Key results

Tapirs in human-modified areas presented higher risk of exposure to livestock pathogens such as bluetongue virus (relative influence (RI) 94.2%) and porcine parvovirus (RI 58.5%), whereas those in pristine habitats exhibited higher risk to Trypanosoma terrestris (RI 92.5%) and Leptospira sp. (RI 39.9%). Bluetongue cases increased from one in Year 2 to 35 in Year 10 (odds ratio 2.90, 95% CI 2.12–3.97, P < 0.001). Significant associations were found between infectious agents and pale mucous membranes (RI 85.5%), high tick burden (RI 78.4%), low red (RI 78.3%) and high white (RI 38.1%) blood cell counts, and presence of wounds (RI 59.1%). Poor body condition was weakly linked to all variables. Elevated alkaline phosphatase, glucose, and total protein levels demonstrated associations with infectious agents, whereas high creatine kinase was linked to capture-related stress. No significant associations with meteorological data were detected.

Conclusions

Our study highlighted the complex influence of biological and environmental conditions on infectious disease dynamics in tapirs. Location emerged as the main risk factor for pathogen occurrence, with biomarkers such as heavy tick burden, pale mucous membranes, presence of wounds, high white blood cell count, and low red blood cell count representing key indicators of tapir health.

Implications

Our research has provided robust scientific evidence addressing long-standing hypotheses on tapir health, supporting practical applications and informing wildlife management and disease surveillance research.

Keywords: boosted regression trees, disease, disease risk analysis, epidemiology, health, machine learning, modelling, One Health, Perissodactyla, physiological markers, surveillance, Tapiridae, wildlife.

References

Acosta IdC, Da Costa AP, Nunes PH, Gondim MFN, Gatti A, Rossi JL, Jr, Gennari SM, Marcili A (2013) Morphological and molecular characterization and phylogenetic relationships of a new species of trypanosome in Tapirus terrestris (lowland tapir), Trypanosoma terrestris sp. nov., from Atlantic Rainforest of southeastern Brazil. Parasites & Vectors 6(1), 349.
| Crossref | Google Scholar |

Anderson K, Ezenwa VO, Jolles AE (2013) Tick infestation patterns in free ranging African buffalo (Syncercus caffer): effects of host innate immunity and niche segregation among tick species. International Journal for Parasitology: Parasites and Wildlife 2, 1-9.
| Crossref | Google Scholar | PubMed |

Araujo JP Jr, Nogueira MF, Cruz TF, Haigh JC (2010) Viral diseases. In ‘Neotropical cervidology: biology and medicine of Latin American deer’. (Eds JMB Duarte, S Gonzalez) pp. 330–341. (International Union for Conservation of Nature, Gland, Switzerland, and Fundacao de Apoio a Pesquisa, Ensino e Extensao: Jaboticabal, Sao Paulo, Brazil)

Arent ZJ, Gilmore C, San-Miguel Ayanz JM, Neyra LQ, García-Peña FJ (2017) Molecular epidemiology of Leptospira serogroup pomona infections among wild and domestic animals in Spain. EcoHealth 14(1), 48-57 Scopus.
| Crossref | Google Scholar | PubMed |

Balseiro A, Thomas J, Gortázar C, Risalde MA (2020) Development and challenges in animal tuberculosis vaccination. Pathogens 9(6), 472.
| Crossref | Google Scholar |

Capewell P, Cren-Travaillé C, Marchesi F, Johnston P, Clucas C, Benson RA, Gorman T-A, Calvo-Alvarez E, Crouzols A, Jouvion G, Jamonneau V, Weir W, Stevenson ML, O’Neill K, Cooper A, Swar N-RK, Bucheton B, Ngoyi DM, Garside P, Rotureau B, MacLeod A (2016) The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife 5, e17716.
| Crossref | Google Scholar | PubMed |

Chatfield J, Milleson M, Stoddard R, Bui DM, Galloway R (2013) Serosurvey of Leptospirosis in Feral Hogs (Sus scrofa) in Florida. Journal of Zoo and Wildlife Medicine 44(2), 404-407.
| Crossref | Google Scholar | PubMed |

Chen X, Moraga P (2025) Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil. Tropical Medicine and Health 53(1), 52.
| Crossref | Google Scholar |

Clauss M, Wilkins T, Hartley A, Hatt J-M (2009) Diet composition, food intake, body condition, and fecal consistency in captive tapirs (Tapirus spp.) in UK collections. Zoo Biology 28(4), 279-291.
| Crossref | Google Scholar | PubMed |

Cohen JM, Sauer EL, Santiago O, Spencer S, Rohr JR (2020) Divergent impacts of warming weather on wildlife disease risk across climates. Science 370(6519), eabb1702.
| Crossref | Google Scholar |

Da Silva JF, Alba DAH, Jorge S, Gindri P, Bialves TS, De Souza GN, Bruhn FRP, Pegoraro LMC, Dellagostin OA (2022) Leptospirosis in dairy cattle from Southern Brazil – risk factors. Acta Scientiae Veterinariae 50, 1857.
| Crossref | Google Scholar |

Dantas-Torres F (2015) Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. International Journal for Parasitology: Parasites and Wildlife 4(3), 452-461.
| Crossref | Google Scholar | PubMed |

Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica 78(2), 103-116.
| Crossref | Google Scholar | PubMed |

De Klerk J, Tildesley M, Labuschagne K, Gorsich E (2024) Modelling bluetongue and African horse sickness vector (Culicoides spp.) distribution in the Western Cape in South Africa using random forest machine learning. Parasites and Vectors 17(1), 354.
| Crossref | Google Scholar |

De Miranda Santos FF, Durigan G, Boschi RS, Ivanauskas N, Rodrigues RR (2024) Tree community dynamics in the cerradão (2002–2016): a case of biome shift. Forest Ecology and Management 555, 121698.
| Crossref | Google Scholar |

Dedman S, Officer R, Clarke M, Reid DG, Brophy D (2017) Gbm.auto: a software tool to simplify spatial modelling and marine protected area planning. PloS ONE 12(12), e0188955.
| Crossref | Google Scholar |

Desquesnes M, Holzmuller P, Lai D-H, Dargantes A, Lun Z-R, Jittaplapong S (2013) Trypanosoma evansi and surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Research International 2013, 194176.
| Crossref | Google Scholar | PubMed |

Dowle M, Srinivasan A (2019) Data.table: extension of ‘data.frame’. R package version. Available at https://CRAN.R-project.org/package=data.table

El Moustaid F, Thornton Z, Slamani H, Ryan SJ, Johnson LR (2021) Predicting temperature-dependent transmission suitability of bluetongue virus in livestock. Parasites & Vectors 14(1), 382.
| Crossref | Google Scholar | PubMed |

Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal Ecology 77(4), 802-813.
| Crossref | Google Scholar | PubMed |

Ellingwood DD, Pekins PJ, Jones H, Musante AR (2020) Evaluating moose Alces alces population response to infestation level of winter ticks Dermacentor albipictus. Wildlife Biology 2020(2), wlb.00619.
| Crossref | Google Scholar |

Fernandes-Santos RC, Medici EP, Testa-José C, Micheletti T (2020) Health assessment of wild lowland tapirs (Tapirus terrestris) in the highly threatened Cerrado biome, Brazil. Journal of Wildlife Diseases 56(1), 34-46.
| Crossref | Google Scholar | PubMed |

Fernandes-Santos RC, Warren K, Vaughan-Higgins R, Micheletti T, Bruce M (2025) Disease dynamics and mortality risk in tapirs (Perissodactyla: Tapiridae) through a systematic literature review: implications for preventive medicine and conservation. Preventive Veterinary Medicine 239, 106470.
| Crossref | Google Scholar | PubMed |

Flesher KM, Medici EP (2022) The distribution and conservation status of Tapirus terrestris in the South American Atlantic Forest. Neotropical Biology and Conservation 17(1), 1-19.
| Crossref | Google Scholar |

Fyumagwa RD, Runyoro V, Horak IG, Hoare R (2007) Ecology and control of ticks as disease vectors in wildlife of the Ngorongoro Crater, Tanzania. South African Journal of Wildlife Research 37(1), 79-90.
| Crossref | Google Scholar |

Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, Jones KE (2020) Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398-402.
| Crossref | Google Scholar | PubMed |

Giroux A, Ortega Z, Bertassoni A, Desbiez ALJ, Kluyber D, Massocato GF, De Miranda G, Mourão G, Surita L, Attias N, Bianchi RdC, Gasparotto VPdO, Oliveira-Santos LGR (2022) The role of environmental temperature on movement patterns of giant anteaters. Integrative Zoology 17(2), 285-296.
| Crossref | Google Scholar | PubMed |

Giroux A, Ortega Z, Attias N, Desbiez ALJ, Valle D, Börger L, Rodrigues Oliveira-Santos LG (2023) Activity modulation and selection for forests help giant anteaters to cope with temperature changes. Animal Behaviour 201, 191-209.
| Crossref | Google Scholar |

Hagedoorn NN, Maze MJ, Carugati M, Cash-Goldwasser S, Allan KJ, Chen K, Cossic B, Demeter E, Gallagher S, German R, Galloway RL, Habuš J, Rubach MP, Shiokawa K, Sulikhan N, Crump JA (2024) Global distribution of Leptospira serovar isolations and detections from animal host species: a systematic review and online database. Tropical Medicine & International Health 29(3), 161-172.
| Crossref | Google Scholar |

Hartup BK, Kollias GV, Jacobsen MC, Valentine BA, Kimber KR (1999) Exertional myopathy in translocated river otters from New York. Journal of Wildlife Diseases 35(3), 542-547.
| Crossref | Google Scholar | PubMed |

Hernandez-Divers SM, Aguilar R, Leandro-Loria D, Foerster CR (2005) Health evaluation of a radiocollared population of free-ranging baird’s tapirs (Tapirus Bairdii) in costa rica. Journal of Zoo and Wildlife Medicine 36(2), 176-187.
| Crossref | Google Scholar | PubMed |

Herrera HM, Norek A, Freitas TPT, Rademaker V, Fernandez O, Jansen AM (2005) Domestic and wild mammals infection by Trypanosoma evansi in a pristine area of the Brazilian Pantanal region. Parasitology Research 96, 121-126.
| Crossref | Google Scholar | PubMed |

IUCN (2025) IUCN Red List of Threatened Species. Available at https://www.iucnredlist.org/en [retrieved 20 August 2025]

Karmacharya D, Herrero-García G, Luitel B, Rajbhandari R, Balseiro A (2024) Shared infections at the wildlife–livestock interface and their impact on public health, economy, and biodiversity. Animal Frontiers 14(1), 20-29.
| Crossref | Google Scholar | PubMed |

Keesing F, Allan BF, Young TP, Ostfeld RS (2013) Effects of wildlife and cattle on tick abundance in central Kenya. Ecological Applications 23(6), 1410-1418.
| Crossref | Google Scholar | PubMed |

Knox F, Jelocnik M, Stephens N, Sims C, Jackson B, Cowen S, Rayner K, Garretson S, Yeap L, Warren K, Vaughan-Higgins R (2024) Chlamydia in wild Australian rodents: a cross-sectional study to inform disease risks for a conservation translocation. Wildlife Research 51(1), WR23060.
| Crossref | Google Scholar |

Kophamel S, Illing B, Ariel E, Difalco M, Skerratt LF, Hamann M, Ward LC, Méndez D, Munns SL (2022) Importance of health assessments for conservation in noncaptive wildlife. Conservation Biology 36(1), e13724.
| Crossref | Google Scholar | PubMed |

Labruna MB, Martins TF, Acosta ICL, Serpa MCA, Soares HS, Teixeira RHF, Fernandes-Santos RC, Medici EP (2021) Ticks and rickettsial exposure in lowland tapirs (Tapirus terrestris) of three Brazilian biomes. Ticks and Tick-Borne Diseases 12(3), 101648.
| Crossref | Google Scholar | PubMed |

Lager KM, Mengeling WL (1994) Porcine parvovirus associated with cutaneous lesions in piglets. Journal of Veterinary Diagnostic Investigation 6(3), 357-359.
| Crossref | Google Scholar | PubMed |

Lelešius R, Sereika V, Zienius D, Michalskien I (2006) Serosurvey of wild boar population for porcine parvovirus and other selected infectious diseases in lithuania. Bulletin of the Veterinary Institute in Pulawy 50(2), 143-147 Available at https://hdl.handle.net/20.500.12512/87584.
| Google Scholar |

Mangini PR, Medici EP, Fernandes-Santos RC (2012) Tapir health and conservation medicine. Integrative Zoology 7(4), 331-345.
| Crossref | Google Scholar | PubMed |

McIntire EJB (2023) Require: installing and loading R packages for reproducible workflows. Available at https://CRAN.R-project.org/package=Require

McIntire EJB, Chubaty AM (2023) Reproducible: enhance reproduciblity of R code. Available at https://reproducible.predictiveecology.org

Medici EP (2010) Assessing the viability of lowland tapir population in a fragmented landscape. PhD thesis. Durrell Institute of Conservation and Ecology, University of Kent, Canterbury.

Medici EP, Mangini PR, Fernandes-Santos RC (2014) Health assessment of wild lowland tapir (Tapirus Terrestris) populations in the Atlantic Forest and pantanal biomes, Brazil (1996–2012). Journal of Wildlife Diseases 50(4), 817-828.
| Crossref | Google Scholar | PubMed |

Medici EP, Fernandes-Santos RC, Testa-José C, Godinho AF, Brand A-F (2021) Lowland tapir exposure to pesticides and metals in the Brazilian Cerrado. Wildlife Research 48(5), 393-403.
| Crossref | Google Scholar |

Medici EP, Mezzini S, Fleming CH, Calabrese JM, Noonan MJ (2022) Movement ecology of vulnerable lowland tapirs between areas of varying human disturbance. Movement Ecology 10(1), 14.
| Crossref | Google Scholar | PubMed |

Medici P, Velez J, Silva AR (2024) Chapter 3: lowland tapir Tapirus terrestris (Linnaeus, 1758). In ‘Tapirs of the world: ecology, conservation and management’. (Eds M Melletti, R Reyna-Hurtado, P Medici) pp. 63–78. (Springer Nature: Switzerland) doi:10.1007/978-3-031-65311-7

Nijhof AM, Penzhorn BL, Lynen G, Mollel JO, Morkel P, Bekker CPJ, Jongejan F (2003) Babesia bicornis sp. nov. and Theileria bicornis sp. nov.: tick-borne parasites associated with mortality in the black rhinoceros (Diceros bicornis). Journal of Clinical Microbiology 41(5), 2249-2254.
| Crossref | Google Scholar |

Obaid MK, Islam N, Alouffi A, Khan AZ, Da Silva Vaz I, Jr, Tanaka T, Ali A (2022) Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Frontiers in Cellular and Infection Microbiology 12, 941831.
| Crossref | Google Scholar | PubMed |

Ordonneau D, Fernandes-Santos RC, Zimmerman D, Pukazhenthi B, Rojas-Jimenez J, Pérez-Flores J, Navas-Suarez PE (2024) Chapter 11: tapir health. In ‘Tapirs of the world: ecology, conservation and management’. (Eds M Melletti, R Reyna-Hurtado, P Medici) pp. 167–205. (Springer Nature: Switzerland) doi:10.1007/978-3-031-65311-7

Padilla M, Dowler RC (1994) Tapirus terrestris. Mammalian Species 481(481), 1-8.
| Crossref | Google Scholar |

Pandit PS, Doyle MM, Smart KM, Young CCW, Drape GW, Johnson CK (2018) Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nature Communications 9(1), 5425.
| Crossref | Google Scholar | PubMed |

Pedersen K, Anderson TD, Maison RM, Wiscomb GW, Pipas MJ, Sinnett DR, Baroch JA, Gidlewski T (2018) Leptospira antibodies detected in wildlife in the USA and the US Virgin Islands. Journal of Wildlife Diseases 54(3), 450-459.
| Crossref | Google Scholar | PubMed |

Pérez SD, Grummer JA, Fernandes-Santos RC, José CT, Medici EP, Marcili A (2019) Phylogenetics, patterns of genetic variation and population dynamics of Trypanosoma terrestris support both coevolution and ecological host-fitting as processes driving trypanosome evolution. Parasites & Vectors 12(1), 473.
| Crossref | Google Scholar | PubMed |

Pérez-Flores J, Calmé S, Reyna-Hurtado R (2016) Scoring body condition in wild baird’s tapir (Tapirus bairdii) using camera traps and opportunistic photographic material. Tropical Conservation Science 9(4), 194008291667612.
| Crossref | Google Scholar |

Pérez-Flores J, Weissenberger H, López-Cen A, Calmé S (2020) Environmental factors influencing the occurrence of unhealthy tapirs in the southern yucatan peninsula. EcoHealth 17(3), 359-369.
| Crossref | Google Scholar | PubMed |

Quse V, Fernandes-Santos RC (2014) ‘Tapir veterinary manual.’ 2nd edn. (IUCN SSC Tapir Specialist Group (TSG))

R Development Core Team (2025) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria) Available at https://www.R-project.org/

Reyna-Hurtado R, Huerta-Rodríguez JO, Rojas-Flores E (2025) Extreme fighting and vocalisations in Tapirus bairdii: observations from aguadas of Calakmul, social arenas for the species. Neotropical Biology and Conservation 20(1), 67-78.
| Crossref | Google Scholar |

Roberts M, Dobson A, Restif O, Wells K (2021) Challenges in modelling the dynamics of infectious diseases at the wildlife–human interface. Epidemics 37, 100523.
| Crossref | Google Scholar | PubMed |

Ruiz-Fons F, Vidal D, Höfle U, Vicente J, Gortázar C (2007) Aujeszky’s disease virus infection patterns in European wild boar. Veterinary Microbiology 120(3–4), 241-250.
| Crossref | Google Scholar | PubMed |

Shivaprakash KN, Sen S, Paul S, Kiesecker JM, Bawa KS (2021) Mammals, wildlife trade, and the next global pandemic. Current Biology 31(16), 3671-3677.e3.
| Crossref | Google Scholar |

Soetisno M (1933) Surra bij een tapir (Tapirus indicus). [Surra in a Tapir (Tapirus indicus).]. Nederlandsch-Indische Bladen Voor Diergeneeskunde 45, 126-128.
| Google Scholar |

Stämpfli H, Oliver-Espinosa O (2020) Chapter 22: clinical chemistry tests. In ‘Large animal internal medicine’. 6th edn. (Eds BP Smith, DC Van Metre, N Pusterla) pp. 395–420.e2. (Elsevier Mosby) doi:10.1016/B978-0-323-55445-9.00022-7

Streck A, Bonatto SL, Homeier T, Souza CK, Gonalves KR, Gava D, Canal CW, Truyen U (2011) High rate of viral evolution in the capsid protein of porcine parvovirus. The Journal of General Virology 92(11), 2628-2636.
| Crossref | Google Scholar | PubMed |

Szabo MPJ, Labruna MB, Pereira MC, Duarte JMB (2003) Ticks (Acari: Ixodidae) on wild marsh-deer (Blastocerus dichotomus) from southeast Brazil: infestations before and after habitat loss. Journal of Medical Entomology 40(3), 268-274.
| Crossref | Google Scholar |

Tadić M, Konjević D, Perko VM, Štritof Z, Zečević I, Benvin I, Milas Z, Turk N, Bujanić M, Hađina S, Habuš J (2025) The occurrence of Leptospira spp. Serogroup Pomona infections in wild boars. Veterinarska Stanica 56(2), 225-233.
| Crossref | Google Scholar |

Tomich RGP, Nogueira MF, Lacerda ACR, Campos FS, Tomas WM, Herrera HM, Lima-Borges PA, Pellegrin AO, Lobato ZIP, Silva RAMS, Pellegrin LA, Barbosa-Stancioli EF (2009) Sorologia para o vírus da língua azul em bovinos de corte, ovinos e veados campeiros no Pantanal sul-mato-grossense. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 61(5), 1222-1226.
| Crossref | Google Scholar |

Uhart MM, Mangini PR, Galvez CES, Corti P, Milano FA, Jorge MC, Girio RJS, Mathias LA, Schettino AM, Catena MC, Terragno R, Aprile G (2010) Bacterial diseases. In ‘Neotropical cervidology, biology and medicine of Latin American deer’. (Eds JMB Duarte, S Gonzalez) pp. 342–362. (International Union for Conservation of Nature, Gland, Switzerland, and Fundacao de Apoio a Pesquisa, Ensino e Extensao: Jaboticabal, Sao Paulo, Brazil)

Varela D, Flesher K, Cartes JL, De Bustos S, Chalukian S, Ayala G, Richard-Hansen C (2019) Tapirus terrestris, Lowland Tapir. The IUCN red list of threatened species. Available at https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T21474A45174127.en