Novel Phosphopeptides as Surface-Active Agents in Iron Nanoparticle Synthesis
Raoul Peltier A D , Wai Ruu Siah B D , Grant V. M. Williams C D , Margaret A. Brimble A E F , Richard D. Tilley B D and David E. Williams A DA School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
B School of Chemical and Physical Science, Victoria University of Wellington, Wellington 6012, New Zealand.
C Industrial Research Ltd, Petone, Wellington 5040, New Zealand.
D MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
E Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, School of Biological Sciences, Auckland 1010, New Zealand.
F Corresponding author. Email: m.brimble@auckland.ac.nz
Australian Journal of Chemistry 65(6) 680-685 https://doi.org/10.1071/CH12168
Submitted: 23 March 2012 Accepted: 17 April 2012 Published: 29 May 2012
Abstract
We report the dramatic effect of rationally-designed phosphopeptides on the size and shape of iron-iron oxide core-shell nanoparticles prepared in a one-pot synthesis by sodium borohydride reduction of an iron salt. These phosphopeptides are effective at small ratios of peptide to metal, in contrast to the behaviour of conventional capping agents, which must be added at high concentration to control the particle growth.
References
[1] P. Tartaj, M. D. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C. J. Serna, J. Phys. D Appl. Phys. 2003, 36, R182.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVChs7w%3D&md5=d6f77d88853ff520d1d6b91fcd2e7e52CAS |
[2] N. A. Frey, S. Peng, K. Cheng, S. H. Sun, Chem. Soc. Rev. 2009, 38, 2532.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlsLbF&md5=f69b42dd8706f5f6d6e77453fe4ba527CAS |
[3] A. H. Lu, E. L. Salabas, F. Schuth, Angew. Chem. Int. Edit. 2007, 46, 1222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitF2lurs%3D&md5=a2b5e52a2a6d6186aa3f0e5b5626a794CAS |
[4] A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 2005, 100, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVaqu7vM&md5=aa0106ce7f68a46ca3a2ef39600d98a6CAS |
[5] J. H. Gao, H. W. Gu, B. Xu, Acc. Chem. Res. 2009, 42, 1097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVOmtb8%3D&md5=f12d10c2471e794d8c0d907bece2fff6CAS |
[6] D. L. Huber, Small 2005, 1, 482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlOltr0%3D&md5=66505b570f98478938ea9ccca1be6854CAS |
[7] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, Chem. Rev. 2010, 110, 2574.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFKgtbk%3D&md5=235a1b091215d20233cb93e89c04a9d9CAS |
[8] A. S. Teja, P. Y. Koh, Prog. Cryst. Growth Charact. Mater. 2009, 55, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVOkt7g%3D&md5=d8f3c3ff633b90d622b96789704d1a78CAS |
[9] K. Haneda, A. H. Morrish, Surf. Sci. 1978, 77, 584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmt1Wmsrg%3D&md5=483f9c7807582ff43347a41f14c8532dCAS |
[10] M. Kishimoto, S. Kitahata, M. Amemiya, IEEE Trans. Magn. 1986, 22, 732.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Maeda, M. Aramaki, Y. Takashima, M. Oogai, T. Goto, Bull. Chem. Soc. Jpn. 1987, 60, 3241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVWjsL8%3D&md5=41c8caea3ae92fe5ae14462b78bee838CAS |
[12] K. J. Carroll, J. A. Pitts, K. Zhang, A. K. Pradhan, E. E. Carpenter, J. Appl. Phys. 2010, 107, 09A302.
[13] L. R. Lu, Z. H. Ai, J. P. Li, Z. Zheng, Q. Li, L. Z. Zhang, Cryst. Growth Des. 2007, 7, 459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVWktA%3D%3D&md5=6185996204d3766a6d2906553ead8721CAS |
[14] A. Martino, M. Stoker, M. Hicks, C. H. Bartholomew, A. G. Sault, J. S. Kawola, Appl. Catal. A – Gen. 1997, 161, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1alsbc%3D&md5=04b4df1df00c21d83394f3ea6d7e147aCAS |
[15] J. P. Wilcoxon, P. P. Provencio, J. Phys. Chem. B 1999, 103, 9809.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1yhsLs%3D&md5=53c2916ccae3dbe3ad61af9f8b7b13f0CAS |
[16] D. L. Huber, E. L. Venturini, J. E. Martin, P. P. Provencio, R. J. Patel, J. Magn. Magn. Mater. 2004, 278, 311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvF2gs78%3D&md5=17e820ed3ccaef1b3d134cf2a8347156CAS |
[17] E. E. Carpenter, S. Calvin, R. M. Stroud, V. G. Harris, Chem. Mater. 2003, 15, 3245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVShu7Y%3D&md5=cc4afcdf57c2ce896fa08e7c27109836CAS |
[18] L. Guo, Q. J. Huang, X. Y. Li, S. H. Yang, Phys. Chem. Chem. Phys. 2001, 3, 1661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Sitr0%3D&md5=8de7452cdea8ff217158da4b90863b88CAS |
[19] M. R. Knecht, R. M. Crooks, New J. Chem. 2007, 31, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlWrs7k%3D&md5=5d5c063812ef1e9d055abd2eeaa076e8CAS |
[20] A. A. A. Aljabali, J. E. Barclay, G. P. Lomonossoff, D. J. Evans, Nanoscale 2010, 2, 2596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFChs7vM&md5=af96aa43a7a082d4d96eb32d5a088ec4CAS |
[21] Z. Wang, R. Lévy, D. G. Fernig, M. Brust, Bioconjug. Chem. 2005, 16, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFCmtLo%3D&md5=715def858b6e558f0b56d7ce242ae2c8CAS |
[22] M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, F. Baneyx, Nat. Mater. 2003, 2, 577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVCrsb4%3D&md5=e6046c446dc573ec07ea5b381066619bCAS |
[23] C. L. Chen, N. L. Rosi, Angew. Chem. Int. Edit. 2010, 49, 1924.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSnsrw%3D&md5=e47334d94416af6636789fcdb4221be2CAS |
[24] C. M. Niemeyer, Angew. Chem. Int. Edit. 2001, 40, 4128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFeisr0%3D&md5=9aa2c2aa4536f70042717610a55d8942CAS |
[25] M. T. Klem, D. Willits, D. J. Solis, A. M. Belcher, M. Young, T. Douglas, Adv. Funct. Mater. 2005, 15, 1489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgtb3L&md5=a8fab88b3a4ab6cf22c2367fdd3babafCAS |
[26] L. A. Gugliotti, D. L. Feldheim, B. E. Eaton, Science 2004, 304, 850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Kjt7o%3D&md5=829fb09c81fb7d7665f619fe5678a2ceCAS |
[27] J. J. Gray, Curr. Opin. Struct. Biol. 2004, 14, 110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWqsrY%3D&md5=97067b72f6caf2708e53dd7aeda17217CAS |
[28] A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, D. E. Morse, Nature 1996, 381, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislCrurY%3D&md5=bb46483d53adddf1c9c77981dbad0429CAS |
[29] B. Grohe, J. O’Young, D. A. Ionescu, G. Lajoie, K. A. Rogers, M. Karttunen, H. A. Goldberg, G. K. Hunter, J. Am. Chem. Soc. 2007, 129, 14946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12gs7zP&md5=65310832df88bd7e54a433b520c47032CAS |
[30] R. Coppage, J. M. Slocik, B. D. Briggs, A. I. Frenkel, H. Heinz, R. R. Naik, M. R. Knecht, J. Am. Chem. Soc. 2011, 133, 12346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFKltro%3D&md5=10a3a4d36c4d0de1ad682941e03e83bfCAS |
[31] C.-Y. Chiu, Y. Li, Y. Huang, Nanoscale 2010, 2, 927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKru7nF&md5=76ea168955e1b0b67ef8b3f5c62fbca6CAS |
[32] Y. J. Li, G. P. Whyburn, Y. Huang, J. Am. Chem. Soc. 2009, 131, 15998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OktbjN&md5=88415ff8dfd20af33b0780de2c1edf37CAS |
[33] S. Si, E. Dinda, T. K. Mandal, J. Nanosci. Nanotechnol. 2008, 8, 5934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFartw%3D%3D&md5=f43684aa6be11f3d6a86539d133556f0CAS |
[34] C.-Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray, Y. Huang, Nat. Chem. 2011, 3, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKlsrw%3D&md5=9c140170324e925a5a764987c9bb7552CAS |
[35] L. M. Forbes, A. P. Goodwin, J. N. Cha, Chem. Mater. 2010, 22, 6524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyitbvF&md5=53c7fdf1205002f96371fbff85ea4546CAS |
[36] Y. Li, C.-Y. Chiu, Y. Huang, Pure Appl. Chem. 2011, 83, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWqsr4%3D&md5=d08fad5257e9f2983741d34febd561cfCAS |
[37] Y. Li, Y. Huang, Adv. Mater. 2010, 22, 1921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCnsL0%3D&md5=106686cd513422557e9da7645556ea6dCAS |
[38] L. Ruan, C.-Y. Chiu, Y. Li, Y. Huang, Nano Lett. 2011, 11, 3040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFSqsbg%3D&md5=1c21d9c68a84978e44259d5f861a44f4CAS |
[39] G. Palui, S. Ray, A. Banerjee, J. Mater. Chem. 2009, 19, 3457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFequ7Y%3D&md5=37ff18a70015504104a7bbe985c88677CAS |
[40] M. Sarikaya, H. Fong, D. W. Frech, R. Humbert, in Bioceramics 1999, Vol. 293, p. 83 (Ed. J. F. Shackelford) (Transtec Publications Ltd: Zurich-Uetikon).
[41] R. Djalali, Y. Chen, H. Matsui, J. Am. Chem. Soc. 2002, 124, 13660.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVymsL0%3D&md5=7e7cdc0d70ddbbf47c6db68bf3f1dbf5CAS |
[42] S. Si, T. K. Mandal, Chem. – Eur. J. 2007, 13, 3160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Sntr0%3D&md5=f0e495d981c7a09c2669a3df30f4e6ffCAS |
[43] R. Lévy, N. T. K. Thanh, R. C. Doty, I. Hussain, R. J. Nichols, D. J. Schiffrin, M. Brust, D. G. Fernig, J. Am. Chem. Soc. 2004, 126, 10076.
| Crossref | GoogleScholarGoogle Scholar |
[44] R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, M. O. Stone, Nat. Mater. 2002, 1, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptV2qs7c%3D&md5=b076da7baed1f4a31aeddab7b1fd1d3cCAS |
[45] R. R. Naik, S. E. Jones, C. J. Murray, J. C. McAuliffe, R. A. Vaia, M. O. Stone, Adv. Funct. Mater. 2004, 14, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlGrsLc%3D&md5=e2a54f468491261e9d9288581df316fcCAS |
[46] X. Y. Fu, Y. Wang, L. X. Huang, Y. L. Sha, L. L. Gui, L. H. Lai, Y. Q. Tang, Adv. Mater. 2003, 15, 902.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCmu74%3D&md5=18282227f88fe49f18b1e92ddb8a75f3CAS |
[47] A. L. DeVries, Annu. Rev. Physiol. 1983, 45, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsFyjtb0%3D&md5=3e19bf55daa8bc20b123ef75d44f533dCAS |
[48] A. L. DeVries, S. K. Komatsu, R. E. Feeney, J. Biol. Chem. 1970, 245, 2901.
| 1:CAS:528:DyaE3cXksVWrsbc%3D&md5=55cb0e5860fe3e733c2f9daa2d73a613CAS |
[49] S. K. Komatsu, A. L. DeVries, R. E. Feeney, J. Biol. Chem. 1970, 245, 2909.
| 1:CAS:528:DyaE3cXksVWrtr4%3D&md5=0e0dd31d01f27a1fe10b3f6f897687cfCAS |
[50] C. A. Knight, A. L. DeVries, L. D. Oolman, Nature 1984, 308, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhslShsLs%3D&md5=09de0aa3da8b52bdda60b5a87950b33bCAS |
[51] (a) M. M. Harding, P. I. Anderberg, A. D. J. Haymet, Eur. J. Biochem. 2003, 270, 1381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFWnsLs%3D&md5=7fffdd47dc455f6eb8c451dcdf44f46cCAS |
(b) B. L. Wilkinson, R. S. Stone, C. J. Capicciotti, M. Thaysen-Andersen, J. M. Matthews, N. H. Packer, R. N. Ben, R. J. Payne, Angew. Chem. Int. Edit. 2012, 51, 3606.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. J. Payne, C.-H. Wong, Chem. Commun. 2010, 46, 21.
| Crossref | GoogleScholarGoogle Scholar |
[52] Y. Tachibana, G. L. Fletcher, N. Fujitani, S. Tsuda, K. Monde, S.-I. Nishimura, Angew. Chem. Int. Edit. 2004, 43, 856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFygs7s%3D&md5=7f07f420fe42dc066bfaa9d35aa7598aCAS |
[53] R. Peltier, M. A. Brimble, J. M. Wojnar, D. E. Williams, C. W. Evans, A. L. DeVries, Chem. Sci. 2010, 1, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsbvF&md5=f9a78f40c737adb1615162d6d784b6f4CAS |
[54] R. Peltier, C. W. Evans, A. L. DeVries, M. A. Brimble, A. J. Dingley, D. E. Williams, Cryst. Growth Des. 2010, 10, 5066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleitbbE&md5=6c15c39c296742c2af02ac0a21d96228CAS |
[55] C. A. Knight, E. Driggers, A. L. DeVries, Biophys. J. 1993, 64, 252.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1emtrc%3D&md5=404fe585ad261e939e5572ee126aa81cCAS |
[56] A. L. DeVries, J. Vandenheede, R. E. Feeney, J. Biol. Chem. 1971, 246, 305.
| 1:CAS:528:DyaE3MXps1SitA%3D%3D&md5=8fb538bebc0b6fe1054cede18d4d8b18CAS |
[57] A. L. DeVries, Science 1971, 172, 1152.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktlWqsbw%3D&md5=bc2416c79d6754c04c3d4fc5514d6315CAS |
[58] W. T. Shier, Y. Lin, A. L. DeVries, Biochim. Biophys. Acta 1972, 263, 406.
| 1:CAS:528:DyaE38XktFKrsLo%3D&md5=e8572cc9f35a249bab6169fc6159f6e7CAS |
[59] K. J. Carroll, D. M. Hudgins, S. Spurgeon, K. M. Kemner, B. Mishra, M. I. Boyanov, L. W. Brown, M. L. Taheri, E. E. Carpenter, Chem. Mater. 2010, 22, 6291.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyks7jI&md5=c2e2e9580425a10ce915a8508d441ec5CAS |
[60] T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. Bin Na, J. Am. Chem. Soc. 2001, 123, 12798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslSnsrs%3D&md5=b1ccb2898c4532a5dcd5bab92c000c5bCAS |
[61] C. Ravikumar, R. Bandyopadhyaya, J. Phys. Chem. C 2011, 115, 1380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslCmtg%3D%3D&md5=24bb9c67d5d15d2c84007b00d4581d40CAS |
[62] K. Haneda, A. H. Morrish, Surf. Sci. 1978, 77, 584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmt1Wmsrg%3D&md5=483f9c7807582ff43347a41f14c8532dCAS |
[63] S. Banerjee, S. Roy, J. W. Chen, D. Chakravorty, J. Magn. Magn. Mater. 2000, 219, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFSht7w%3D&md5=bf651db97621af2c33f0efee2277d814CAS |
[64] L. T. Kuhn, A. Bojesen, L. Timmermann, M. M. Nielsen, S. Morup, J. Phys. Condens. Matter 2002, 14, 13551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVyntw%3D%3D&md5=b2c73fb6123e58890611a52b1851fc64CAS |
[65] P. Persson, N. Nilsson, S. Sjoberg, J. Colloid Interface Sci. 1996, 177, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvFKmsA%3D%3D&md5=21d212b1a10642b6872b1c424697ffd5CAS |
[66] S. Brice-Profeta, M. A. Arrio, E. Tronc, N. Menguy, I. Letard, C. C. D. Moulin, M. Nogues, C. Chaneac, J. P. Jolivet, P. Sainctavit, J. Magn. Magn. Mater. 2005, 288, 354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Grtr4%3D&md5=4ced62278b65bbc5241c49efe8a66a68CAS |
[67] E. Tronc, A. Ezzir, R. Cherkaoui, C. Chaneac, M. Nogues, H. Kachkachi, D. Fiorani, A. M. Testa, J. M. Greneche, J. P. Jolivet, J. Magn. Magn. Mater. 2000, 221, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVSlurs%3D&md5=c6acf6e8058f5a4a3f06a61e56efab06CAS |
[68] D. Prodan, C. Chaneac, E. Tronc, J. P. Jolivet, R. Cherkaour, A. Ezzir, M. Nogues, J. L. Dormann, J. Magn. Magn. Mater. 1999, 203, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVCju78%3D&md5=348cafda0cf8d90b44906807ad57b8f9CAS |
[69] T. J. Daou, S. Begin-Colin, J. M. Greneche, F. Thomas, A. Derory, P. Bernhardt, P. Legare, G. Pourroy, Chem. Mater. 2007, 19, 4494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFOgur4%3D&md5=bb7a96da9708f7306a348a21f793f6e7CAS |
[70] G. Muszynska, G. Dobrowolska, A. Medin, P. Ekman, J. O. Porath, J. Chromatogr. A 1992, 604, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVOmsLc%3D&md5=9c9e211dff2e39ff573f4c70bcb98a6fCAS |
[71] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVGktrk%3D&md5=fccc096cf97e947ff49398d7d14e896dCAS |
[72] H. Galal-Gorchev, W. Stumm, J. Inorg. Nucl. Chem. 1963, 25, 567.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXntFagsQ%3D%3D&md5=92a746741942d85be2064e14b3168d4dCAS |
[73] R. B. Wilhelmy, R. C. Patel, E. Matijevic, Inorg. Chem. 1985, 24, 3290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlt12rsLg%3D&md5=37dba6a69b3cc78f1940df7a92067635CAS |
[74] R. Osterberg, Nature 1957, 179, 476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXlvFOqsg%3D%3D&md5=3dbcf401a77a5c14b66484830c7e405eCAS |
[75] L. Andersson, J. Porath, Anal. Biochem. 1986, 154, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVCrtbo%3D&md5=78cbf6529713f9edadc345f5bb3a6c14CAS |
[76] S. M. Zhou, X. T. Zhang, H. C. Gong, B. Zhang, Z. S. Wu, Z. L. Du, S. X. Wu, J. Phys. Condens. Matter 2008, 20, 075217.