Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structure, Stability, and Cycloaddition Reactions of Nitrile Selenides

Tibor Pasinszki A D , Melinda Krebsz A B and Balázs Hajgató C
+ Author Affiliations
- Author Affiliations

A Institute of Chemistry, Eötvös Loránd University, PO Box 32, H-1518 Budapest 112, Hungary.

B Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 45 Budaörsi Street, H-1112 Budapest, Hungary.

C Vrije Universiteit Brussel, Eenheid Algemene Chemie, Pleinlaan 2, B-1050 Brussel, Belgium.

D Corresponding author. Email: pasinszki@chem.elte.hu

Australian Journal of Chemistry 67(3) 444-450 https://doi.org/10.1071/CH13530
Submitted: 2 October 2013  Accepted: 4 November 2013   Published: 22 November 2013

Abstract

The equilibrium structure, unimolecular reactions, and bimolecular reactions of nitrile selenides (XCNSe, where X = H, F, Cl, Br, CN, CH3) have been investigated using CCSD(T), CCSD(T)//B3LYP, and MR-AQCC//UB3LYP quantum-chemical methods. Nitrile selenides are demonstrated to be stable under isolated conditions at ambient temperature, i.e. in the dilute gas phase or in an inert solid matrix, but unstable in the condensed phase or solutions owing to bimolecular reactions. FCNSe and CH3CNSe cycloaddition with ethynes, ethenes, and nitriles was studied using the MR-AQCC//UB3LYP method. Cycloaddition was predicted to be facile at room temperature with small dipolarophiles.


References

[1]  R. M. Paton, Chem. Soc. Rev. 1989, 18, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFCit7o%3D&md5=fd9b2c0aed7e74ad77cd033a04f6b1eeCAS |

[2]  M. Krebsz, T. Pasinszki, Curr. Org. Chem. 2011, 15, 1734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslantro%3D&md5=e7527ac75ecf9492ba9cb66088c688d9CAS |

[3]  P. Gerbaux, R. Flammang, E. H. Morkved, M. W. Wong, C. Wentrup, Tetrahedron Lett. 1998, 39, 533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXptVahuw%3D%3D&md5=2e2002b264186a57b692d8f5836612a8CAS |

[4]  P. Gerbaux, R. Flammang, E. H. Morkved, M. W. Wong, C. Wentrup, J. Phys. Chem. A 1998, 102, 9021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1als7w%3D&md5=86356f5775674e039d2512c5966bc5a2CAS |

[5]  M. Krebsz, G. Májusi, B. Pacsai, G. Tarczay, T. Pasinszki, Chem. – Eur. J. 2012, 18, 2646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSgurg%3D&md5=8b4a543f298b781d9627cf5b36f5b406CAS | 22290560PubMed |

[6]  C. L. Pedersen, N. Hacker, Tetrahedron Lett. 1977, 18, 3981.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  C. L. Pedersen, N. Harrit, M. Poliakoff, I. Dunkin, Acta Chem. Scand. B 1977, 31b, 848.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) Z.-X. Yu, P. Caramella, K. N. Houk, J. Am. Chem. Soc. 2003, 125, 15420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1aktLs%3D&md5=aa87f5505bb735bfa5f984074d380c83CAS | 14664587PubMed |
      (b) J. Gräfenstein, A. M. Hjerpe, E. Kraka, D. Cremer, J. Phys. Chem. A 2000, 104, 1748.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Orlova, J. D. Goddard, J. Chem. Phys. 2000, 112, 10085.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  T. Pasinszki, B. Hajgató, B. Havasi, N. P. C. Westwood, Phys. Chem. Chem. Phys. 2009, 11, 5263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Srsb4%3D&md5=4892d0d4fb53c8e7b11a1d8c0f061a63CAS | 19551193PubMed |

[10]  T. Pasinszki, M. Krebsz, B. Hajgató, Chem. Phys. Lett. 2009, 473, 343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1ymu70%3D&md5=ebde5f1ce121870415b6e8177d128a88CAS |

[11]  M. Krebsz, B. Hajgató, G. Bazsó, G. Tarczay, T. Pasinszki, Aust. J. Chem. 2010, 63, 1686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaqsbjL&md5=ece5bba6e02aba39eeaf57fad0e946cdCAS |

[12]  (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f6cf3fb1eb0aa0bd90e09e70f7fe63aeCAS |
      (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  P. G. Szalay, R. J. Bartlett, Chem. Phys. Lett. 1993, 214, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2ju7o%3D&md5=ba22d42df8cc680dd25340b88396f471CAS |

[14]  (a) G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtFSgtLY%3D&md5=620353464b2e475fa0f6ec6ffe319115CAS |
      (b) K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. K.-C. Lau, D. V. Deubel, J. Chem. Theory Comput. 2006, 2, 103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12rtb3I&md5=dc7dd7c74f8c2ba3b6eab9e4b0e468b0CAS |

[16]  (a) T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=d4e9cc0e43c2e0f1a0ea5fbf96cf32b6CAS |
      (b) R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09 (Revision B.01) 2010 (Gaussian, Inc.: Wallingford, CT).

[18]  (a) H.-J. Werner, J. P. Knowles, G. Knizia, F. R. Manby, M. Schütz, WIREs Comput. Mol. Sci. 2012, 2, 242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Klt74%3D&md5=1c796d8367f7c3ea81d181f0f59da146CAS |
         (b) H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO ver. 2012.1 2012. http://www.molpro.net