Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Azides – Diazonium Ions – Triazenes: Versatile Nitrogen-rich Functional Groups

Dominik K. Kölmel A , Nicole Jung A B and Stefan Bräse A B C
+ Author Affiliations
- Author Affiliations

A Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany.

B Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

C Corresponding author. Email: braese@kit.edu

Australian Journal of Chemistry 67(3) 328-336 https://doi.org/10.1071/CH13533
Submitted: 3 October 2013  Accepted: 20 November 2013   Published: 19 December 2013

Abstract

For more than 100 years, nitrogen-rich compounds such as azides, diazonium ions, and triazenes have proved to be extremely valuable. Because these functional groups can be easily introduced into various substrates, they are frequently used nowadays. More importantly, they can be converted into a great number of other functional groups. The scope of this article is thus to summarize possible synthetic routes for the formation of these functional groups as well as to highlight some of the most prominent applications of these exciting moieties in chemical biology and combinatorial chemistry. Many of the most famous name reactions such as the Staudinger reduction, Staudinger ligation, Sandmeyer reaction, Wallach reaction, Mitsunobu reaction, Huisgen reaction, Balz–Schiemann reaction, Meerwein arylation, Pschorr reaction or Gomberg–Bachmann reaction are covered.


References

[1]  L. M. Blair, J. Sperry, J. Nat. Prod. 2013, 76, 794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXls12ksbg%3D&md5=140a6e209f77e1556da75d60d63a1a7aCAS | 23577871PubMed |

[2]  (a) P. Grieß, Philos. Trans. R. Soc. Lond. 1864, 13, 377.
      (b) P. Grieß, Justus Liebigs Ann. Chem. 1865, 135, 131.

[3]  H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis78%3D&md5=eb7c277b0aa77b3f1b0bf94365b61847CAS |

[4]  P. L. Fishbein, H. W. Moore, Synth. Commun. 1989, 19, 3283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFOlur4%3D&md5=446355181fbe947cba88b45720df3baaCAS |

[5]  R. E. Conrow, W. D. Dean, Org. Process Res. Dev. 2008, 12, 1285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVeitLnJ&md5=0ba38ccdac9ea14f3af6dff9003d81f0CAS |

[6]  S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. B. Phan, H. Mayr, J. Phys. Org. Chem. 2006, 19, 706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFOmu78%3D&md5=cf42f1b077970a4f5e4a00e2d22d0695CAS |

[8]  (a) N. Halland, A. Braunton, S. Bachmann, M. Marigo, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 4790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFaqsb4%3D&md5=e996e2aa49374a23df7d33ecb6e51091CAS | 15080678PubMed |
      (b) Y. Ju, D. Kumar, R. S. Varma, J. Org. Chem. 2006, 71, 6697.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) W. Kurosawa, T. Kan, T. Fukuyama, J. Am. Chem. Soc. 2003, 125, 8112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1SqsLw%3D&md5=35547ac25b6c8c1849d83d65be9e9674CAS | 12837075PubMed |
      (b) J. S. Yadav, M. K. Gupta, S. K. Pandey, B. V. S. Reddy, A. V. S. Sarma, Tetrahedron Lett. 2005, 46, 2761.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) M.-C. Wu, L. Anderson, C. W. Slife, L. J. Jensen, J. Org. Chem. 1974, 39, 3014.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhslSisA%3D%3D&md5=bf0ffc0e3ce212a4c15dae9026802e3fCAS |
      (b) R. Kimmich, W. Voelter, Liebigs Ann. Chem. 1981, 1100.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. M. Krülle, B. Davis, H. Ardron, D. L. Long, N. A. Hindle, C. Smith, D. Brown, A. L. Lane, D. J. Watkin, D. G. Marquess, G. W. J. Fleet, Chem. Commun. 1996, 1271.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H. Loibner, E. Zibral, Helv. Chim. Acta 1976, 59, 2100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlyqtg%3D%3D&md5=3b8f53ee9f59714fad84fb17fd6bb071CAS |

[12]  A. S. Thompson, G. R. Humphrey, A. M. DeMarco, D. J. Mathre, E. J. J. Grabowski, J. Org. Chem. 1993, 58, 5886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVKjtL0%3D&md5=241cda33736bf3295b7ebe1c9ec9cfb7CAS |

[13]  L. Rokhum, G. Bez, J. Chem. Sci. 2012, 124, 687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsV2mtb0%3D&md5=22fd1ab7a45f152423489ec24445a943CAS |

[14]  (a) E. D. Goddard-Borger, R. V. Stick, Org. Lett. 2011, 13, 2514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2hu7k%3D&md5=9a3df90b21774dd1ed5b95eb66591407CAS |
      (b) E. D. Goddard-Borger, R. V. Stick, Org. Lett. 2007, 9, 3797.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  G. M. Green, N. P. Peet, W. A. Metz, J. Org. Chem. 2001, 66, 2509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKit70%3D&md5=e55a66d7d2c3efa2cdcecfd90178eca9CAS | 11281799PubMed |

[16]  P. T. Nyffeler, C.-H. Liang, K. M. Koeller, C.-H. Wong, J. Am. Chem. Soc. 2002, 124, 10773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVynu7g%3D&md5=feef61cab33d99a02fde38f6f730957cCAS | 12207533PubMed |

[17]  C. J. Cavender, V. J. Shiner, J. Org. Chem. 1972, 37, 3567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXjs1Sq&md5=8e2ecb8a150d1444029b3c4c9b4e4c70CAS |

[18]  J. R. Suárez, B. Trastoy, M. E. Pérez-Ojeda, R. Marín-Barrios, J. L. Chiara, Adv. Synth. Catal. 2010, 352, 2515.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  N. Fischer, E. D. Goddard-Borger, R. Greiner, T. M. Klapötke, B. W. Skelton, J. Stierstorfer, J. Org. Chem. 2012, 77, 1760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVymtrw%3D&md5=4a417540f1a7c4fc030d216300ddd761CAS | 22283437PubMed |

[20]  T. Keumi, T. Umeda, Y. Inoue, H. Kitajima, Bull. Chem. Soc. Jpn. 1989, 62, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFCiu7Y%3D&md5=4ef679c41ee48afe828f9f5964cd7bf2CAS |

[21]  R. Huisgen, I. Ugi, Angew. Chem. 1956, 68, 705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXntFCntA%3D%3D&md5=9d1a8e62ce22fdb2e78fb0292a77472aCAS |

[22]  R. N. Butler, A. Fox, S. Collier, L. A. Burke, J. Chem. Soc. Perkin Trans. 2 1998, 2243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVaqsr4%3D&md5=c547c67b62a9fbcd3345e42af05508d0CAS |

[23]  V. Benin, P. Kaszynski, J. G. Radziszewski, J. Org. Chem. 2002, 67, 1354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosV2htg%3D%3D&md5=dee21b56bcff1b7def06c1b42601a666CAS | 11846686PubMed |

[24]  P. V. Chouthaiwale, P. U. Karabal, G. Suryavanshi, A. Sudalai, Synthesis 2010, 3879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1aiur7F&md5=da7d7ef0e0316c4c97e2ed15f5a94374CAS |

[25]  N. Jung, S. Bräse, Angew. Chem. Int. Ed. 2012, 51, 12169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGiu7nK&md5=928b77ce8448bdd8da64b9c851d20e20CAS |

[26]  T. Schröder, M. Gartner, T. Grab, S. Bräse, Org. Biomol. Chem. 2007, 5, 2767.
         | Crossref | GoogleScholarGoogle Scholar | 17700843PubMed |

[27]  F. L. Lin, H. M. Hoyt, H. van Halbeek, R. G. Bergman, C. R. Bertozzi, J. Am. Chem. Soc. 2005, 127, 2686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosFWgtA%3D%3D&md5=87453317f11d71ef6dec70d168054e9aCAS | 15725026PubMed |

[28]  Organic Azides – Syntheses and Applications (Eds S. Bräse, K. Banert) 2009 (Wiley: Chichester, UK).

[29]  H. Mahdavi, J. Amani, Tetrahedron Lett. 2009, 50, 5923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFarsrvI&md5=9dbed85bdb3808b04275062436a6ede5CAS |

[30]  J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ggu78%3D&md5=fc6f69df3c396ecf7042a1599a94959bCAS | 20309487PubMed |

[31]  F. Himo, Z. P. Demko, L. Noodleman, K. B. Sharpless, J. Am. Chem. Soc. 2002, 124, 12210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFSisr0%3D&md5=a73f01407cb6b0d03f5749d4926afd37CAS | 12371861PubMed |

[32]  K. R. Henery-Logan, R. A. Clark, Tetrahedron Lett. 1968, 9, 801.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  N. Jung, S. Bräse, in Science in Synthesis (Ed. K. Banert) 2009, Vol. 41, Ch. 41.9, pp. 613–635 (Thieme: Stuttgart).

[34]  D. Fritz, S. Bräse, Synlett 2010, 1544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1ynsL0%3D&md5=4981ffcf62867f7cf63bc5f70a8a3194CAS |

[35]  G. Bartoli, G. Di Antonio, R. Giovannini, S. Giuli, S. Lanari, M. Paoletti, E. Marcantoni, J. Org. Chem. 2008, 73, 1919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFWgu78%3D&md5=3a2437a07f6e5382abd3e921d5ba8138CAS | 18266385PubMed |

[36]  A. Kamal, N. Markandeya, N. Shankaraiah, C. R. Reddy, S. Prabhakar, C. S. Reddy, M. N. Eberlin, L. S. Santos, Chem. Eur. J. 2009, 15, 7215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslyjt7c%3D&md5=73d830f6b1bb4bd6307bd5c1a44fbfe0CAS | 19544509PubMed |

[37]  H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3cXivVKk&md5=7edd66a7eccf8c69273f046d4cce1cfcCAS |

[38]  E. Saxon, C. R. Bertozzi, Science 2000, 287, 2007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvF2ru7g%3D&md5=8c8cbe551ac9e9c50b0a7d61a92185afCAS | 10720325PubMed |

[39]  M. Köhn, R. Breinbauer, Angew. Chem. Int. Ed. 2004, 43, 3106.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. D. Best, Biochemistry 2009, 48, 6571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlemtbk%3D&md5=5cf668e36330075d67cc11cc87b539d1CAS | 19485420PubMed |

[41]  C. I. Schilling, N. Jung, M. Biskup, U. Schepers, S. Bräse, Chem. Soc. Rev. 2011, 40, 4840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeitbbO&md5=33fc82ec5ba800dfc09801655872cb80CAS | 21687844PubMed |

[42]  V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=a7cb70cd3e268b3421cca3b9b998eff4CAS |

[43]  C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
         | Crossref | GoogleScholarGoogle Scholar | 11975567PubMed |

[44]  B. T. Worrell, J. A. Malik, V. V. Fokin, Science 2013, 340, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1yrs7k%3D&md5=c51974b054f36e29535d1b7a37bd83d8CAS | 23558174PubMed |

[45]  M. G. Finn, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ggu7o%3D&md5=975a28cef5739886193126bfac37a028CAS | 20309482PubMed |

[46]  K. E. Beatty, F. Xie, Q. Wang, D. A. Tirrell, J. Am. Chem. Soc. 2005, 127, 14150.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVegt7rM&md5=b6c24f9728ea82abd79a43c40f4018e5CAS | 16218586PubMed |

[47]  T.-L. Hsu, S. R. Hanson, K. Kishikawa, S.-K. Wang, M. Sawa, C.-H. Wong, Proc. Natl Acad. Sci. USA 2007, 104, 2614.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVWruro%3D&md5=473157f33b36a54d76df4f597378cf29CAS | 17296930PubMed |

[48]  W. P. Heal, S. R. Wickramasinghe, R. J. Leatherbarrow, E. W. Tate, Org. Biomol. Chem. 2008, 6, 2308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCqsL4%3D&md5=2c04f0d16da5b9278bfa20aee52d6a41CAS | 18563263PubMed |

[49]  A. Salic, T. J. Mitchison, Proc. Natl Acad. Sci. USA 2008, 105, 2415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Khtb0%3D&md5=89808d7cfc0f03ddfbf59a154b205511CAS | 18272492PubMed |

[50]  M. Boyce, C. R. Bertozzi, Nat. Methods 2011, 8, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFaht70%3D&md5=5de31ef69de7c1da5130cf3f3f5638c0CAS | 21799498PubMed |

[51]  M. Austeri, M. Enders, M. Nieger, S. Bräse, Eur. J. Org. Chem. 2013, 1667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVGnur4%3D&md5=1ba62c79b66754be91454be84909ff41CAS |

[52]  (a) D. M. Zink, T. Grab, T. Baumann, M. Nieger, E. C. Barnes, W. Klopper, S. Bräse, Organometallics 2011, 30, 3275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1GmtL8%3D&md5=4821cbe09bb1909f53ec0b69521cbcb2CAS |
      (b) D. M. Zink, T. Baumann, M. Nieger, S. Bräse, Eur. J. Org. Chem. 2011, 1432.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Seifermann, T. Muller, S. Bräse, Eur. J. Org. Chem. 2013, 3215.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  (a) D. Fürniss, T. Mack, F. Hahn, S. B. L. Vollrath, K. Koroniak, U. Schepers, S. Bräse, Beilstein J. Org. Chem. 2013, 9, 56.
         | Crossref | GoogleScholarGoogle Scholar | 23399592PubMed |
      (b) S. B. L. Vollrath, D. Fürniss, U. Schepers, S. Bräse, Org. Biomol. Chem. 2013, 11, 8197.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  S. B. L. Vollrath, S. Bräse, K. Kirshenbaum, Chem. Sci 2012, 3, 2726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWns7zJ&md5=20f2056156ece6917329ba49cb5c857fCAS |

[55]  (a) C. I. Schilling, S. Bräse, Org. Biomol. Chem. 2007, 5, 3586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gjur3E&md5=9ae86d32fc595332ddfacd34a5db715fCAS | 17971986PubMed |
      (b) O. Plietzsch, C. I. Schilling, M. Tolev, M. Nieger, C. Richert, T. Muller, S. Bräse, Org. Biomol. Chem. 2009, 7, 4734.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) O. Plietzsch, C. I. Schilling, T. Grab, S. L. Grage, A. S. Ulrich, A. Comotti, P. Sozzani, T. Muller, S. Bräse, New J. Chem. 2011, 35, 1577.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. J. Inglis, P. Pierrat, T. Muller, S. Bräse, C. Barner-Kowollik, Soft Matter 2010, 6, 82.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) For a review, see: T. Muller, S. Bräse, Angew. Chem. Int. Ed. 2011, 50, 11844.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  For a recent example, see: T. Hagendorn, S. Bräse, Eur. J. Org. Chem. 2014, in press.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  G. Wittig, A. Krebs, Chem. Ber. 1961, 94, 3260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XltlShsw%3D%3D&md5=6d53b9628b22e06e8b68fec943346b83CAS |

[58]  N. J. Agard, J. A. Prescher, C. R. Bertozzi, J. Am. Chem. Soc. 2004, 126, 15046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Sks7s%3D&md5=bd44bd8b5f0ffa2fb2040b3e91f81509CAS | 15547999PubMed |

[59]  P. Griefs, Justus Liebigs Ann. Chem. 1858, 106, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  W. Kirmse, Angew. Chem. Int. Ed. Engl. 1976, 15, 251.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  H. Bonin, E. Fouquet, F.-X. Felpin, Adv. Synth. Catal. 2011, 353, 3063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyktrbI&md5=dcc960502109b330f25a0b69f2d84fd8CAS |

[62]  D. T. Flood, Org. Synth. 1943, 2, 295.

[63]  V. D. Filimonov, M. Trusova, P. Postnikov, E. A. Krasnokutskaya, Y. M. Lee, H. Y. Hwang, H. Kim, K.-W. Chi, Org. Lett. 2008, 10, 3961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVChsL7E&md5=f950e4edbae5aeb457bcc5cd429e4348CAS | 18722457PubMed |

[64]  M. Barbero, M. Crisma, I. Degani, R. Fochi, P. Perracino, Synthesis 1998, 1171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlWgur4%3D&md5=e9b24d56d5e4e4f81ede1561838ea0e8CAS |

[65]  (a) S. Dahmen, S. Bräse, Angew. Chem. Int. Ed. 2000, 39, 368.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. Bräse, S. Dahmen, C. Popescu, M. Schroen, F.-J. Wortmann, Chem. Eur. J. 2004, 10, 5285.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  H. H. Hodgson, Chem. Rev. 1947, 40, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2sXitVGqsA%3D%3D&md5=9fb69b5caeefe591b4d819f83498edb0CAS | 20291034PubMed |

[67]  T. Furuya, J. E. M. N. Klein, T. Ritter, Synthesis 2010, 1804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqsro%3D&md5=2095e6725ee88ac58df4aaa24f7588e0CAS | 20953341PubMed |

[68]  D. P. Hari, B. König, Angew. Chem. Int. Ed. 2013, 52, 4734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsl2hsr8%3D&md5=171d519195e590afd9bd060ba4bce1aaCAS |

[69]  K. K. Laali, M. Shokouhimehr, Curr Org Synth 2009, 6, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGrurY%3D&md5=81af9a99a344fceeeee7a54bb3937121CAS |

[70]  G. Pratsch, T. Wallaschkowski, M. R. Heinrich, Chem. Eur. J. 2012, 18, 11555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFClsLnF&md5=c8633f5dbe57a023a40ca0c92234ef86CAS | 22887751PubMed |

[71]  M. E. Trusova, E. A. Krasnokutskaya, P. S. Postnikov, Y. Choi, K.-W. Chi, V. D. Filimonov, Synthesis 2011, 2154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOqs7bK&md5=aa334bd99b076e0f62f8454d98378f5cCAS |

[72]  E. R. Alexander, R. E. Burge, J. Am. Chem. Soc. 1950, 72, 3100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXls1ejuw%3D%3D&md5=7b8a03640ead4a8378a6f4f7b0f58386CAS |

[73]  Z. Wu, R. Glaser, J. Am. Chem. Soc. 2004, 126, 10632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt12ktLw%3D&md5=780415fa07331617af2637cb84491dfbCAS | 15327321PubMed |

[74]  A. Minkkilä, J. R. Savinainen, H. Käsnänen, H. Xhaard, T. Nevalainen, J. T. Laitinen, A. Poso, J. Leppänen, S. M. Saario, ChemMedChem 2009, 4, 1253.
         | Crossref | GoogleScholarGoogle Scholar | 19472270PubMed |

[75]  E. Merino, Chem. Soc. Rev. 2011, 40, 3835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12nur8%3D&md5=4442ae89788780dc85ce5aaad0fe9b2bCAS | 21409258PubMed |

[76]  A. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVemurg%3D&md5=4a96bc1f7a839db60ff0c0c105b83d8eCAS | 21483974PubMed |

[77]  A. M. M. Eggermont, J. M. Kirkwood, Eur. J. Cancer 2004, 40, 1825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1OitL0%3D&md5=64d316cd6eb699a60d2204a132876ca6CAS |

[78]  R. Thust, M. Schneider, U. Wagner, D. Schreiber, Cell Biol. Toxicol. 1991, 7, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtFyks7w%3D&md5=c021ddeb4aff4ff5820d90ad9aa9a5d8CAS | 1889006PubMed |

[79]  D. B. Kimball, M. M. Haley, Angew. Chem. Int. Ed. 2002, 41, 3338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKnsbs%3D&md5=6eef26711937b94ed0d41ff3c6269c5eCAS |

[80]  (a) D. D. Beal, J. L. Skibba, K. K. Whitnable, G. T. Bryan, Cancer Res. 1976, 36, 2827.
         | 1:CAS:528:DyaE28XltVersLs%3D&md5=4d461b3059971e8abf577b723fd870b1CAS | 179708PubMed |
      (b) P. Kleihaus, G. F. Kolar, G. P. Margeson, Cancer Res. 1976, 36, 2189.

[81]  G. U. Baig, M. F. G. Stevens, J. Chem. Soc., Perkin Trans. 1 1987, 3, 665.
         | Crossref | GoogleScholarGoogle Scholar |

[82]  M. J. Wanner, M. Koch, G.-J. Koomen, J. Med. Chem. 2004, 47, 6875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSmtLrF&md5=d59a3141f5030871e2d7b02dbc96576cCAS | 15615536PubMed |

[83]  C. C. Lee, E. C. F. Ko, Can. J. Chem. 1976, 54, 3041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXntFCmtg%3D%3D&md5=02e9895774d1157ea43acc637297f71eCAS |

[84]  (a) K. C. Nicolaou, C. N. C. Boddy, H. Li, A. E. Koumbis, R. Hughes, S. Natarajan, N. F. Jain, J. M. Ramanjulu, S. Bräse, M. E. Solomon, Chem. Eur. J. 1999, 5, 2602.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVKltrk%3D&md5=1455a76807c62a5843c1b31f458c5466CAS |
      (b) R. Lazny, J. Poplawski, J. Köbberling, D. Enders, S. Bräse, Synlett 1999, 1304.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  For typical base-induced fragmentation of triazenes, see: M. E. P. Lormann, S. Dahmen, F. Avemaria, F. Lauterwasser, S. Bräse, Synlett 2002, 915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslWntLw%3D&md5=de1ee55e9fc26a00f4caf2fd53f0e82aCAS |

[86]  R. Reingruber, S. Vanderheiden, A. Wagner, M. Nieger, T. Muller, M. Es-Sayed, S. Bräse, Eur. J. Org. Chem. 2008, 3314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1ahu78%3D&md5=862354b7b96a6098ccd79a7c1d103b6bCAS |

[87]  M. L. Gross, D. H. Blank, W. M. Welch, J. Org. Chem. 1993, 58, 2104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFamtL8%3D&md5=82a4ac6aebb94b47362a47e35a343744CAS |

[88]  (a) S. Bräse, D. Enders, J. Köbberling, F. Avemaria, Angew. Chem. Int. Ed. 1998, 37, 3413.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Lormann, S. Dahmen, S. Bräse, Tetrahedron Lett. 2000, 41, 3813.
         | Crossref | GoogleScholarGoogle Scholar |

[89]  S. Vanderheiden, B. Bulat, T. Zevaco, N. Jung, S. Bräse, Chem. Commun. 2011, 9063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFKhsLo%3D&md5=0d1e5c1fa076f3185e4774e0f761c871CAS |

[90]  C.-Y. Liu, P. Knochel, J. Org. Chem. 2007, 72, 7106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1WisLY%3D&md5=6cfadd12942f6d1ae3d57ee8e43c38f0CAS | 17705535PubMed |

[91]  F. Avemaria, V. Zimmermann, S. Bräse, Synlett 2004, 1163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFChs7k%3D&md5=a02f6102ab7156e023c3bb0e0f892ab5CAS |

[92]  K. Knepper, S. Vanderheiden, S. Bräse, Eur. J. Org. Chem. 2006, 1886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVCmtb8%3D&md5=e4be3211a0534871bf638748586b6e2eCAS |

[93]  N. Satyamurthy, J. R. Barrio, G. T. Bida, M. E. Phelps, Tetrahedron Lett. 1990, 31, 4409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtFWntb8%3D&md5=80d9d67edc5506b150ba245138b46e48CAS |

[94]  C. Pilot, S. Dahmen, F. Lauterwasser, S. Bräse, Tetrahedron Lett. 2001, 42, 9179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVGmsLY%3D&md5=5b1a5042eba60d4ca5db71e4355aa977CAS |

[95]  (a) Fluorine: M. Döbele, S. Vanderheiden, N. Jung, S. Bräse, Angew. Chem. Int. Ed. 2010, 49, 5986.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Chlorine, bromine, iodine: M. Barbero, I. Degani, N. Diulgheroff, S. Dughera, R. Fochi, Synthesis 2001, 2180.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Iodine: C.-Y. Liu, P. Knochel, Org. Lett. 2005, 7, 2543.
         | Crossref | GoogleScholarGoogle Scholar |

[96]  T. B. Patrick, T. Juehne, E. Reeb, D. Hennessy, Tetrahedron Lett. 2001, 42, 3553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlSks7c%3D&md5=4300fec951d1adf28b4303c150b01765CAS |

[97]  S. Bräse, M. Schroen, Angew. Chem. Int. Ed. 1999, 38, 1071.
         | Crossref | GoogleScholarGoogle Scholar |

[98]  T. Saeki, E.-C. Son, K. Tamao, Org. Lett. 2004, 6, 617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFSmtQ%3D%3D&md5=0048f9d58e4f49c45f7b3b554942228bCAS | 14961637PubMed |

[99]  (a) S. Bräse, S. Dahmen, J. Heuts, Tetrahedron Lett. 1999, 40, 6201.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. Bräse, S. Dahmen, hem. Eur. J. 2000, 6, 1899.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. E. P. Lormann, C. H. Walker, M. Es-Sayed, S. Bräse, Chem. Commun. 2002, 1296.
         | Crossref | GoogleScholarGoogle Scholar |

[100]  (a) V. Zimmermann, F. Avemaria, S. Bräse, J. Comb. Chem. 2007, 9, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislekur4%3D&md5=57ce80fad26d15932f73b84f09b05c8cCAS | 17348726PubMed |
      (b) V. Zimmermann, S. Bräse, J. Comb. Chem. 2007, 9, 1114.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Zimmermann, R. Müller, S. Bräse, Synlett 2008, 278.

[101]  (a) C. Gil, A. Schwögler, S. Bräse, J. Comb. Chem. 2004, 6, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Smsrs%3D&md5=051a7e66779af827aad93baa3bc9e4ecCAS | 14714982PubMed |
      (b) R. Reingruber, S. Vanderheiden, T. Muller, M. Nieger, M. Es-Sayed, S. Bräse, Tetrahedron Lett. 2009, 50, 3439.
         | Crossref | GoogleScholarGoogle Scholar |

[102]  M. Kreis, C. F. Nising, M. Schroen, K. Knepper, S. Bräse, Org. Biomol. Chem. 2005, 3, 1835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFWlu7s%3D&md5=74a8e02538f7b3384f061b7f6fc9ad26CAS | 15889164PubMed |

[103]  (a) S. Bräse, S. Dahmen, F. Lauterwasser, N. E. Leadbeater, E. L. Sharp, Bioorg. Med. Chem. Lett. 2002, 12, 1845.
         | Crossref | GoogleScholarGoogle Scholar | 12086831PubMed |
      (b) S. Bräse, S. Dahmen, F. Lauterwasser, N. E. Leadbeater, E. L. Sharp, Bioorg. Med. Chem. Lett. 2002, 12, 1849.
         | Crossref | GoogleScholarGoogle Scholar |

[104]  A. Hafner, S. Bräse, Adv. Synth. Catal. 2013, 355, 996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFCjt7Y%3D&md5=07b85c412b8ec8f72236d563f88a67a9CAS |

[105]  (a) A. Hafner, S. Bräse, Angew. Chem. Int. Ed. 2012, 51, 3713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOrt7o%3D&md5=e63c8b6c72eb1015a53538a0e5d993e5CAS |
      (b) A. Hafner, A. Bihlmeier, M. Nieger, W. Klopper, S. Bräse, J. Org. Chem. 2013, 78, 7938.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  A. Hafner, T. J. Feuerstein, S. Bräse, Org. Lett. 2013, 15, 3468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFagu70%3D&md5=622b38ab943f7c63448ac42cd9a869f6CAS | 23796073PubMed |

[107]  S. Bräse, Acc. Chem. Res. 2004, 37, 805.
         | Crossref | GoogleScholarGoogle Scholar | 15491127PubMed |

[108]  C. Gil, S. Bräse, Curr. Opin. Chem. Biol. 2004, 8, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslWqsro%3D&md5=b781129048bec05cfe6a0c75f47b7c10CAS | 15183320PubMed |

[109]  A. de Meijere, H. Nüske, M. Es-Sayed, T. Labahn, M. Schroen, S. Bräse, Angew. Chem. Int. Ed. 1999, 38, 3669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFOr&md5=58735b24fab598c84899b10b763bbb35CAS |

[110]  (a) S. Bräse, S. Dahmen, M. E. P. Lormann, Methods Enzymol. 2003, 369, 127.
         | Crossref | GoogleScholarGoogle Scholar | 14722951PubMed |
      (b) N. Jung, M. Wiehn, S. Bräse, Top. Curr. Chem. 2007, 278, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[111]  O. Wallach, F. Heusler, Justus Liebigs Ann. Chem. 1888, 243, 219.
         | Crossref | GoogleScholarGoogle Scholar |

[112]  S. Bräse, J. Köbberling, D. Enders, R. Lazny, M. Wang, S. Brandtner, Tetrahedron Lett. 1999, 40, 2105.
         | Crossref | GoogleScholarGoogle Scholar |

[113]  S. Bräse, S. Dahmen, M. Pfefferkorn, J. Comb. Chem. 2000, 2, 710.
         | Crossref | GoogleScholarGoogle Scholar | 11126299PubMed |

[114]  S. Dahmen, S. Bräse, Org. Lett. 2000, 2, 3563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFGlsbs%3D&md5=1eeb760e85c9bbbf72205e28f91de5f8CAS | 11073645PubMed |

[115]  (a) N. Vignola, S. Dahmen, D. Enders, S. Bräse, Tetrahedron Lett. 2001, 42, 7833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsV2rs7c%3D&md5=89c0d43a4b87c47d4059f4205b09294aCAS |
      (b) N. Vignola, S. Dahmen, D. Enders, S. Bräse, J. Comb. Chem. 2003, 5, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[116]  D. Jakubczyk, G. Brenner-Weiss, S. Bräse, Eur. J. Org. Chem. 2013, in press.
         | Crossref | GoogleScholarGoogle Scholar |