Patterned Copper Sulfide Thin Films: a Method for Studying Leaching Behaviour
Rachel S. Brokenshire A B , Anthony Somers A , Miao Chen B D and Angel A. J. Torriero C DA Institute for Frontier Materials, Deakin University, Burwood, Vic. 3125, Australia.
B CSIRO Minerals Resources, Clayton, Vic. 3186, Australia.
C Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic. 3125, Australia.
D Corresponding authors. Email: angel.torriero@deakin.edu.au; Miao.Chen@csiro.au
Australian Journal of Chemistry 70(1) 26-32 https://doi.org/10.1071/CH16088
Submitted: 14 February 2016 Accepted: 12 May 2016 Published: 24 June 2016
Abstract
An experimental study on copper leaching from Cu1.85S thin films is presented, wherein copper extraction is quantitatively evaluated by changes in film thickness measured by white light interferometric profilometry. Changes in the film morphology and elemental composition, as assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, are used to confirm that the loss in film thickness is due to changes in the copper content and that the resultant film species is consistent with the mechanism of copper dissolution. The Cu1.85S thin films were synthesized by chemical bath deposition. The leaching behaviour of copper from the films was investigated in acidic ferric sulfate media at pHs 1, 2, and 3, and pH 1 at redox potentials of ~350–650 mV versus Ag/AgCl in 3 M KCl. The changes in the film thickness and copper sulfur ratio were shown to reflect copper dissolution behaviour from chalcocite. Leaching of the Cu1.85S films demonstrated a greater decrease in film thickness as pH decreased. In addition comparison of the order of reaction as a function of proton concentration in non-oxidative dissolution of Cu1.85S (0.06) and as a function of iron(iii) concentration in ferric oxidation of Cu1.85S (0.40) shows that the proton dissolution reaction is negligible. Leaching of the Cu1.85S films at redox potentials of up to ~476.4 mV versus Ag/AgCl in 3 M KCl produced covellite and demonstrated greater decreases in film thickness with increases in the redox potential. Leaching of the films above ~476.4 mV resulted in the formation of spionkopite and demonstrated a much lesser decrease in film thickness. These results are consistent with Eh-pH diagrams for the Cu–S–H2O system.
References
[1] (a) C. J. Ferron, Proceedings of the Copper 2003-Cobre 2003, the 5th International Conference, November 30 to December 3, 2003, Santiago, Chile (Ed. P. A. Riveros, D. Dixon, D. B. Dreisinger, J. Menacho) 2003, pp. 337–352 (Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, Quebec)(b) H. R. Watling, Hydrometallurgy 2006, 84, 81.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) M. Vera, A. Schippers, W. Sand, Appl. Microbiol. Biotechnol. 2013, 97, 7529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ylt7jL&md5=2e4f5ded01a70bb375bee3e6ea48d73dCAS | 23720034PubMed |
(b) C. L. Brierley, J. A. Brierley, Appl. Microbiol. Biotechnol. 2013, 97, 7543.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. K. Crundwell, Hydrometallurgy 2013, 139, 132.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. M. Córdoba, J. A. Muñoz, M. L. Blázquez, F. González, Hydrometallurgy 2008, 93, 81.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Rohwerder, W. Sand, in Microbial Processing of Metal Sulfides (Eds E. Donati, W. Sand) 2007, pp. 35–58 (Springer: Netherlands)
(f) C. Klauber, Int. J. Miner. Process. 2008, 86, 1.
| Crossref | GoogleScholarGoogle Scholar |
(g) C. Angeles, Kinetics of leaching of covellite in ferric-sulfate-sulfuric acid media 2015 Masters Thesis, University of British Columbia, Vancouver, Canada.
(h) S. A. Bolorunduro, Kinetics of leaching of chalcocite in acid ferric sulfate media : chemical and bacterial leaching 1999 Masters Thesis, University of British Columbia, Vancouver, Canada.
(i) J. E. Dutrizac, R. J. C. MacDonald, Can. Metall. Q. 1974, 13, 423.
| Crossref | GoogleScholarGoogle Scholar |
(j) H. Naderi, M. Abdollahy, N. Mostoufi, J. Min. Environ. 2015, 6, 109.
(k) M. J. Nicol, I. Lazaro, Hydrometallurgy 2002, 63, 15.
| Crossref | GoogleScholarGoogle Scholar |
(l) X. Niu, R. Ruan, Q. Tan, Y. Jia, H. Sun, Hydrometallurgy 2015, 155, 141.
| Crossref | GoogleScholarGoogle Scholar |
(m) R. Ruan, E. Zhou, X. Liu, B. Wu, G. Zhou, J. Wen, Rare Met. 2010, 29, 552.
| Crossref | GoogleScholarGoogle Scholar |
(n) H. Miki, M. Nicol, L. Velásquez-Yévenes, Hydrometallurgy 2011, 105, 321.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) W. Zeng, G. Qiu, H. Zhou, M. Chen, Hydrometallurgy 2011, 105, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Sqs7fO&md5=390696a74063deb4d11c1be870837483CAS |
(b) F. K. Crundwell, Hydrometallurgy 1988, 21, 155.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. M. Córdoba, J. A. Muñoz, M. L. Blázquez, F. González, A. Ballester, Hydrometallurgy 2008, 93, 88.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Havlik, Hydrometallurgy: Principles and Applications 2014 (Elsevier Science).
[4] M. Chen, J. Zhao, X. Zhao, Electrochim. Acta 2011, 56, 5016.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlentLk%3D&md5=14aff4f8dcdab493e30ec71acababc00CAS | 21785491PubMed |
[5] (a) M. M. Antonijević, G. D. Bogdanović, Hydrometallurgy 2004, 73, 245.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Li, N. Kawashima, K. Kaplun, V. J. Absolon, A. R. Gerson, Geochim. Cosmochim. Acta 2010, 74, 2881.
| Crossref | GoogleScholarGoogle Scholar |
(c) R.-L. Yu, D.-L. Zhong, L. Miao, F.-D. Wu, G.-Z. Qiu, G.-H. Gu, Trans. Nonferrous Met. Soc. China 2011, 21, 1634.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. Aromaa, P. Pesonen, Physicochem. Probl. Miner. Process. 2007, 41, 313.
| 1:CAS:528:DC%2BD2sXhtlektL%2FO&md5=074659a87b3180794af08848de04d85dCAS |
[7] M. E. Wadsworth, Miner. Sci. Eng. 1972, 4, 36.
| 1:CAS:528:DyaE3sXksVCms74%3D&md5=f1c59e1fd423e3350219bb1c97b748d8CAS |
[8] (a) A. Ahmadi, M. Schaffie, J. Petersen, A. Schippers, M. Ranjbar, Hydrometallurgy 2011, 106, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SrsLk%3D&md5=db737e9d06fcc558a3abc57b85e3c017CAS |
(b) G. Viramontes-Gamboa, M. M. Penar-Gomar, D. G. Dixon, Hydrometallurgy 2010, 105, 140.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. A. Third, R. Cord-Ruwisch, H. R. Watling, Biotechnol. Bioeng. 2002, 78, 433.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. F. Tshilombo, D. G. Dixon, Mechanism and Kinetics of Chalcopyrite Passivation during Bacterial Leaching 2003 (Canadian Institute of Mining: Santiago, Chile)
(e) A. Sandström, A. Shchukarev, J. Paul, Miner. Eng. 2005, 18, 505.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. Ahmadi, Int. J. Nonferrous Metall. 2012, 01, 42.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. Li, N. Kawashima, J. Li, A. P. Chandra, A. R. Gerson, Adv. Colloid Interface Sci. 2013, 197–198, 1.
[9] (a) M. Ohring, in Materials Science of Thin Films (Second Edition) 2002, pp. 559–640 (Academic Press: San Diego)
(b) C. G. Munce, G. P. Parker, G. A. Hope, ECS Trans. 2006, 2, 401.
(c) P. Hlubina, D. Ciprian, J. Luňáček, M. Lesňák, Appl. Phys. B: Lasers Opt. 2006, 84, 511.
| Crossref | GoogleScholarGoogle Scholar |