Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Alkali-Metal Modification of Li(Ni0.33Mn0.33Co0.33)O2*

Jimmy Wu A and Neeraj Sharma A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: Neeraj.sharma@unsw.edu.au

Australian Journal of Chemistry 72(8) 600-606 https://doi.org/10.1071/CH19114
Submitted: 8 March 2019  Accepted: 5 June 2019   Published: 27 June 2019

Abstract

Layered lithium transition metal oxides are widely used as cathodes in lithium-ion batteries and are continuously being developed to provide more energy. Here, the synthesis and structure of Li(Ni0.33Mn0.33Co0.33)O2, ‘Li0.9K0.1(Ni0.33Mn0.33Co0.33)O2’, and ‘Li0.9Cs0.1(Ni0.33Mn0.33Co0.33)O2’ are characterised in detail and compared with similar studies in the literature. Structural models are evaluated based on the statistical quality of fitting via the Rietveld method with X-ray diffraction data and the use of a range of starting structural models. Critically, this work highlights that the larger alkali atoms do not dope on to the Li sites but rather are likely to be distributed on the surface of the particles which is also evidenced with electron microscopy. This work showcases that care must be taken by researchers when using such doping regimes and the concentration of the dopants.


References

[1]  K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 1980, 15, 783.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Z. Lu, D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 2001, 4, A200.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  B. Huang, Y. I. Jang, Y. M. Chiang, D. R. Sadoway, J. Appl. Electrochem. 1998, 28, 1365.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. E. Blomgren, J. Electrochem. Soc. 2017, 164, A5019.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Yoshino, Angew. Chem. Int. Ed. 2012, 51, 5798.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
         | Crossref | GoogleScholarGoogle Scholar | 30589465PubMed |

[7]  N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Jaguemont, L. Boulon, Y. Dube, Appl. Energy 2016, 164, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  S. Megahed, B. Scrosati, J. Power Sources 1994, 51, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. Kohler, J. Proell, S. Ulrich, V. Trouillet, S. Indris, M. Przybylski, W. Pfleging, Proc. SPIE 2009, 7202, 720207.

[11]  C. J. Orendorff, D. Doughty, Electrochem. Soc. Interface 2012, 21, 35.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Vayrynen, J. Salminen, J. Chem. Thermodyn. 2012, 46, 80.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  L. G. Lu, X. B. Han, J. Q. Li, J. F. Hua, M. G. Ouyang, J. Power Sources 2013, 226, 272.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. N. Reimers, J. Dahn, J. Electrochem. Soc. 1992, 139, 2091.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Y. M. T. Ohzuku, Chem. Lett. 2001, 30, 642.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  B. J. Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater. 2003, 15, 3676.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. Yabuuchi, Y. Makimura, T. Ohzuku, J. Electrochem. Soc. 2007, 154, A314.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Z. G. Yang, X. D. Guo, W. Xiang, W. B. Hua, J. Zhang, F. R. He, K. Wang, Y. Xiao, B. H. Zhong, J. Alloys Compd. 2017, 699, 358.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Y. H. Li, J. Y. Liu, Y. K. Lei, C. Y. Lai, Q. J. Xu, J. Mater. Sci. 2017, 52, 13596.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Z. Zhang, D. Chen, C. Chang, RSC Adv. 2017, 7, 51721.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  P. Dahiya, C. Ghanty, K. Sahoo, S. Basu, S. Majumder, J. Electrochem. Soc. 2018, 165, A2536.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  C. X. Gong, W. X. Lv, L. M. Qu, O. E. Bankole, G. H. Li, R. Zhang, M. Hu, L. X. Lei, J. Power Sources 2014, 247, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Z. Zheng, Z. Wu, W. Xiang, W. Hua, W. Guo, Chem. J. Chin. Univ. 2017, 38, 1458.

[24]  R. R. Zhao, Z. L. Yang, J. X. Liang, D. L. Lu, C. C. Liang, X. C. Guan, A. M. Gao, H. Y. Chen, J. Alloys Compd. 2016, 689, 318.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  W. Hua, J. Zhang, Z. Zheng, W. Liu, X. Peng, X.-D. Guo, B. Zhong, Y.-J. Wang, X. Wang, Dalton Trans. 2014, 43, 14824.
         | Crossref | GoogleScholarGoogle Scholar | 25162932PubMed |

[26]  S.-C. Yin, Y.-H. Rho, I. Swainson, L. Nazar, Chem. Mater. 2006, 18, 1901.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  K. Shaju, P. G. Bruce, J. Power Sources 2007, 174, 1201.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  H.-J. Noh, S. Youn, C. S. Yoon, Y.-K. Sun, J. Power Sources 2013, 233, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  X. Zhang, W. Jiang, A. Mauger, F. Gendron, C. Julien, J. Power Sources 2010, 195, 1292.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  K.-S. Lee, S.-T. Myung, J. Prakash, H. Yashiro, Y.-K. Sun, Electrochim. Acta 2008, 53, 3065.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  K. Karthikeyan, S. Amaresh, G. Lee, V. Aravindan, H. Kim, K. Kang, W. Kim, Y. Lee, Electrochim. Acta 2012, 68, 246.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  C. Deng, S. Zhang, B. Wu, S. Y. Yang, H. Q. Li, J. Solid State Electrochem. 2010, 14, 871.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  C. Julien, A. Mauger, K. Zaghib, H. Groult, Materials 2016, 9, 595.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  Y. H. Ding, P. Zhang, Y. Jiang, D. S. Gao, Solid State Ion. 2007, 178, 967.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 4440.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
         | Crossref | GoogleScholarGoogle Scholar | 30589465PubMed |

[37]  J. Dahn, U. von Sacken, C. Michal, Solid State Ion. 1990, 44, 87.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  M. Foo, T. Klimczuk, R. Cava, Mater. Res. Bull. 2005, 40, 665.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  P. Rozier, J. M. Tarascon, J. Electrochem. Soc. 2015, 162, A2490.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  H. M. Rietveld, J. Appl. Cryst. 1969, 2, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  B. H. Toby, R. B. Von Dreele, J. Appl. Cryst. 2013, 46, 544.
         | Crossref | GoogleScholarGoogle Scholar |