Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Polarity Inversion Catalysis by the 1,4-Addition of N-Heterocyclic Carbenes

Xuan B. Nguyen A , Yuji Nakano A and David W. Lupton https://orcid.org/0000-0002-0958-4298 A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: david.lupton@monash.edu




Xuan B. Nguyen completed a Bachelor of Biotechnology majoring in chemistry and pharmacology before graduating with Honours (first class) in chemistry under the supervision of Professor David W. Lupton at Monash University in 2017. In 2018, he commenced studies towards a Doctorate of Philosophy in the same group. His studies are focused on the discovery of polarity reversal of conjugate acceptors enabled by NHC catalysis.



Yuji Nakano completed a Bachelor of Science (Science Scholar Program) at Monash University in 2012 and a Ph.D. in 2017 at Monash University under the supervision of Professor David W. Lupton, where he worked on enantioselective N-heterocyclic carbene catalysis. From there, Yuji moved to Princeton University as an Endeavour Postdoctoral Fellow to conduct post-doctoral research with Professor Todd K. Hyster, investigating photoenzymatic catalyzed processes. In mid-2019, Yuji returned to Melbourne and took up a position as a post-doctoral fellow with Professor Jonathan B. Baell, where he is undertaking medicinal chemistry research at the Monash Institute of Pharmaceutical Sciences.



David W. Lupton graduated with a Bachelor of Science (Honours, first class) in 2001 (University of Adelaide) before being awarded a Doctorate of Philosophy for studies under the supervision of Professor Martin G. Banwell (Australian National University) in 2005. Dr Lupton then undertook a post-doctoral fellowship with Professor Barry M. Trost (Stanford University) as a Sir Keith Murdoch fellow of the American Australian Association. In 2007, he returned to Australia to take up an academic appointment at Monash University in Melbourne, receiving an Australian Research Council Future Fellowship in 2011, and promotion to Professor in 2018. In 2010, he received the Athel Beckwith Lectureship of the Royal Australian Chemical Institute (RACI) while in 2013 he received the Rennie Medal of the RACI. Studies under David’s supervision are focused on the capacity of catalysis to enable discoveries in chemical synthesis.

Australian Journal of Chemistry 73(1) 1-8 https://doi.org/10.1071/CH19550
Submitted: 25 October 2019  Accepted: 27 November 2019   Published: 3 February 2020

Abstract

Polarity inversion is the hallmark of N-heterocyclic carbene (NHC) organocatalysis, with the generation and reaction of acyl anion equivalents known for more than 70 years. In contrast, polarity inversion through 1,4-addition of NHCs to conjugate acceptors was first applied in a catalytic reaction in 2006. This sub-field of NHC-organocatalysis has developed steadily over the subsequent years, enabling novel coupling reactions, enantioselective cycloisomerizations, polymerizations, and other reactions. In this review, this emerging area of NHC-organocatalysis is discussed with comprehensive coverage. In addition, notes regarding the use of other Lewis base catalysts for related reactions, and comments regarding NHC selection for this type of catalysis, are provided.


References

[1]  (a) For an introduction, see: G. Wittig, P. Davis, G. Koenig, Chem. Ber. 1951, 84, 627.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Seebach, Angew. Chem. Int. Ed. Engl. 1979, 18, 239.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For metal-catalyzed umpolung, see: G. Zanoni, A. Pontiroli, A. Marchetti, G. Vidari, Eur. J. Org. Chem. 2007, 3599.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Streuff, Synthesis 2013, 281.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) For organocatalytic umpolung, see: X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Waser, J. Novacek, Angew. Chem. Int. Ed. 2015, 54, 14228.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) For radical ion umpolung, see: M. A. Ischay, T. P. Yoon, Eur. J. Org. Chem. 2012, 3359.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For general NHC catalysis, see: D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.
         | Crossref | GoogleScholarGoogle Scholar | 17956132PubMed |
      (b) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) For acyl azolium enolates, see: J. Douglas, G. Churchill, A. D. Smith, Synthesis 2012, 2295.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) For cascade catalysis, see: A. Grossmann, D. Enders, Angew. Chem. Int. Ed. 2012, 51, 314.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) For acyl anion free catalysis, see: S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc. Rev. 2013, 42, 4906.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) For acyl azolium catalysis: S. De Sarkar, A. Biswas, R. C. Samanta, A. Studer, Chem. – Eur. J. 2013, 19, 4664.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) C. Zhang, J. F. Hooper, D. W. Lupton, ACS Catal. 2017, 7, 2583.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. Mondal, S. R. Yetra, S. Mukherjee, A. T. Biju, Acc. Chem. Res. 2019, 52, 425.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) For cooperative catalysis: M. H. Wang, K. A. Scheidt, Angew. Chem. Int. Ed. 2016, 55, 14912.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Ukai, R. Tanaka, T. Dokawa, J. Pharm. Soc. Jpn. 1943, 63, 296.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) Enediamine 3 is a type of deoxy-Breslow intermediate, a name used to describe compounds with a double bond from the NHC to a carbon lacking an oxygen substituent. In this review, the term ‘enediamine’ is used to describe all intermediates forming from 1,4-addition and tautomerization. For other types of deoxy-Breslow intermediates, see: C. E. I. Knappke, J.-M. Neudörfl, A. J. von Wangelin, Org. Biomol. Chem. 2010, 8, 1695.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. E. I. Knappke, A. J. Arduengo, H. Jiao, J.-M. Neudörfl, A. J. von Wangelin, Synthesis 2011, 3784.
      (c) R. N. Reddi, P. K. Prasad, A. Sudalai, Angew. Chem. Int. Ed. 2015, 54, 14150.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Schedler, N. E. Wurz, C. G. Daniliuc, F. Glorius, Org. Lett. 2014, 16, 3134.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. Bhunia, S. Thorat, R. G. Gonnade, A. T. Biju, Chem. Commun. 2015, 13690.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) For studies examining the properties of deoxy-Breslow intermediates, see: A. Berkessel, S. Elfert, Adv. Synth. Catal. 2014, 356, 571.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) B. Maji, M. Horn, H. Mayr, Angew. Chem. Int. Ed. 2012, 51, 6231.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) B. Maji, H. Mayr, Angew. Chem. Int. Ed. 2012, 51, 10408.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) N. Takashina, C. C. Price, J. Am. Chem. Soc. 1962, 84, 489.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) For a review covering this work: H. Guo, Y. C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 2018, 118, 10049.
         | Crossref | GoogleScholarGoogle Scholar |

[7]     (a) M. M. Rauhut, H. Currier, U.S. Patent 3074999 1963 [Chem. Abstr. 1963, 58, 66109].
      (b) For selected reviews, see: C. E. Aroyan, A. Dermenci, S. J. Miller, Tetrahedron 2009, 65, 4069.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Li, J. Zhang, Chem. Soc. Rev. 2016, 45, 1657.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Ni, W.-L. Chan, Y. Lu, Chem. Rev. 2018, 118, 9344.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) For examples, see: C. D. Hall, N. Lowther, B. R. Tweedy, A. C. Hall, G. Shaw, J. Chem. Soc. Perkin Trans. 2 1998, 2, 2047.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. N. Khong, Y. S. Tran, O. Kwon, Tetrahedron 2010, 66, 4760.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X.-B. Wang, Y. Saga, R. Shen, H. Fujino, M. Goto, L.-B. Han, RSC Adv. 2012, 2, 5935.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Takizawa, K. Kishi, Y. Yoshida, S. Mader, F. A. Arteaga, S. Lee, M. Hoshino, M. Rueping, M. Fujita, H. Sasai, Angew. Chem. Int. Ed. 2015, 54, 15511.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J.-P. Melder, K. Ebel, S. Brode, Angew. Chem. Int. Ed. Engl. 1995, 34, 1021.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. Zhang, E. Y.-X. Chen, Angew. Chem. Int. Ed. 2012, 51, 2465.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. Fischer, S. W. Smith, D. A. Powell, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 1472.
         | Crossref | GoogleScholarGoogle Scholar | 16448117PubMed |

[12]  (a) M. E. Krafft, T. F. N. Hazell, J. Am. Chem. Soc. 2005, 127, 10168.
         | Crossref | GoogleScholarGoogle Scholar | 16028918PubMed |
      (b) M. E. Krafft, K. A. Seibert, T. F. N. Hazell, C. Hirosawa, Chem. Commun. 2005, 5772.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  L. Zhao, X. Y. Chen, S. Ye, Z.-X. Wang, J. Org. Chem. 2011, 76, 2733.
         | Crossref | GoogleScholarGoogle Scholar | 21375260PubMed |

[14]  (a) For NHC-mediated enolate reactions, see: L. He, T.-Y. Jian, S. Ye, J. Org. Chem. 2007, 72, 7466.
         | Crossref | GoogleScholarGoogle Scholar | 17705547PubMed |
      (b) P. Goswami, S. Sharma, G. Singh, R. V. Anand, J. Org. Chem. 2018, 83, 4213.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S.-i. Matsuoka, N. Awano, M. Nakazawa, M. Suzuki, Tetrahedron Lett. 2016, 57, 5707.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Bhunia, S. R. Yetra, R. G. Gonnadec, A. T. Biju, Org. Biomol. Chem. 2016, 14, 5612.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. L. Atienza, K. A. Scheidt, Aust. J. Chem. 2011, 64, 1158.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) X. Wu, L. Zhou, R. Maiti, C. Mou, L. Pan, Y. R. Chi, Angew. Chem. Int. Ed. 2019, 58, 477.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. Bae, C. Zhang, R. M. Gillard, D. W. Lupton, Angew. Chem. Int. Ed. 2019, 58, 13370.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S.-i. Matsuoka, Y. Ota, A. Washio, A. Katada, K. Ichioka, K. Takagi, M. Suzuki, Org. Lett. 2011, 13, 3722.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. T. Biju, M. Padmanaban, N. E. Wurz, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 8412.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  T. Kato, S.-i. Matsuoka, M. Suzuki, J. Org. Chem. 2014, 79, 4484.
         | Crossref | GoogleScholarGoogle Scholar | 24773333PubMed |

[18]  Y. Nakano, D. W. Lupton, Angew. Chem. Int. Ed. 2016, 55, 3135.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  L. Scott, Y. Nakano, C. Zhang, D. W. Lupton, Angew. Chem. Int. Ed. 2018, 57, 10299.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  K. Yasui, M. Kamitani, M. Tobisu, Angew. Chem. Int. Ed. 2019, 58, 14157.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) M. Hong, X. Tang, L. Falivene, L. Caporaso, L. Cavallo, E. Y.-X. Chen, J. Am. Chem. Soc. 2016, 138, 2021.
         | Crossref | GoogleScholarGoogle Scholar | 26779897PubMed |
      (b) M. Hong, E. Y.-X. Chen, Angew. Chem. Int. Ed. 2014, 53, 11900.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  O.-a. Rajachan, M. Paul, V. R. Yatham, J.-M. Neudörfl, K. Kanokmedhakul, S. Kanokmedhakul, A. Berkessel, Tetrahedron Lett. 2015, 56, 6537.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S.-i. Matsuoka, M. Nakazawa, M. Suzuki, Bull. Chem. Soc. Jpn. 2015, 88, 1093.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  X. B. Nguyen, Y. Nakano, N. M. Duggan, L. Scott, D. W. Lupton, Angew. Chem. Int. Ed. 2019, 58, 11483.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) For the impact of substituent on nucleophilicity of the NHC, see: B. Maji, M. Breugst, H. Mayr, Angew. Chem. Int. Ed. 2011, 50, 6915.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Levens, F. An, M. Breugst, H. Mayr, D. W. Lupton, Org. Lett. 2016, 18, 3566.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  S.-i. Matsuoka, S. Namera, A. Washio, K. Takagi, M. Suzuki, Org. Lett. 2013, 15, 5916.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  W. N. Ottou, D. Bourichon, J. Vignolle, A.-L. Wirotius, F. Robert, Y. Landais, J.-M. Sotiropoulos, K. Miqueu, D. Taton, Chem. – Eur. J. 2014, 20, 3989.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  R. L. Atienza, H. S. Roth, K. A. Scheidt, Chem. Sci. 2011, 2, 1772.
         | Crossref | GoogleScholarGoogle Scholar | 22448316PubMed |

[29]  M. Schedler, N. E. Wurz, C. G. Daniliuc, F. Glorius, Org. Lett. 2014, 16, 3134.
         | Crossref | GoogleScholarGoogle Scholar | 24824735PubMed |

[30]  D. S. Allgäuer, H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A. R. Ofial, H. Mayr, J. Am. Chem. Soc. 2017, 139, 13318.
         | Crossref | GoogleScholarGoogle Scholar | 28921959PubMed |