Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterisation of Photolabile SPhNPPOC-Protected (R)-MiniPEG Containing Chiral γ-Peptide Nucleic Acid Monomers

Qingteng Lai A , Bo Dong A B , Kaixuan Nie A B , Huanhuan Shi A B , Bo Liang C and Zhengchun Liu https://orcid.org/0000-0002-2897-8663 A B D
+ Author Affiliations
- Author Affiliations

A Hunan Key Laboratory for Super Microstructure and Ultrafast Process, Department of Electronic Information Science and Technology, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China.

B School of Basic Medical Science, Central South University, Changsha, Hunan 410083, China.

C State Engineering Laboratory of Highway Maintenance Technology, School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.

D Corresponding author. Email: liuzhengchunseu@126.com

Australian Journal of Chemistry 74(3) 199-203 https://doi.org/10.1071/CH20017
Submitted: 16 January 2020  Accepted: 13 August 2020   Published: 9 September 2020

Abstract

Peptide nucleic acid (PNA) microarrays are expected to be developed as a new generation of gene detection tools. However, poor water solubility and the limitation of the sequence design of achiral PNA probes mainly hinder their application. Accordingly, (R)-diethylene glycol containing a chiral PNA (miniPEG-γPNA) has been developed to solve these problems. Light-directed synthesis is an effective method to fabricate high-density microarrays. Thiophenyl-2-(2-nitrophenyl)propoxycarbonyl (SPhNPPOC) is a newly synthesised photolabile protective group with high photolytic efficiency. Protecting the PNA monomers with SPhNPPOC may improve the preparation process of PNA microarrays by light-directed synthesis in terms of shortening the deprotection time and restraining side reactions. In this article, SPhNPPOC/carbobenzoxy (Cbz)-protected chiral miniPEG-γPNA monomers are synthesised, and the photo-deprotection rate is approximately twice that of a 2-(2-nitrophenyl)propyloxycarbonyl (NPPOC)-protected monomer. The monomers are expected to be used for the efficient and rapid fabrication of chiral miniPEG-γPNA microarrays through a photolithographic strategy.


References

[1]  P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Science 1991, 254, 1497.
         | Crossref | GoogleScholarGoogle Scholar | 1962210PubMed |

[2]  M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, P. E. Nielsen, Nature 1993, 365, 566.
         | Crossref | GoogleScholarGoogle Scholar | 7692304PubMed |

[3]  S. Tomac, M. Sarkar, T. Ratilainen, P. Wittung, P. E. Nielsen, B. Norden, A. Graeslund, J. Am. Chem. Soc. 1996, 118, 5544.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Nucleic Acids Res. 1993, 21, 197.
         | Crossref | GoogleScholarGoogle Scholar | 8382793PubMed |

[5]  C. Gambacorti-Passerini, L. Mologni, C. Bertazzoli, P. le Coutre, E. Marchesi, F. Grignani, P. E. Nielsen, Blood 1996, 88, 1411.
         | Crossref | GoogleScholarGoogle Scholar | 8695861PubMed |

[6]  A. S. Ricciardi, E. Quijano, R. Putman, W. M. Saltzman, P. M. Glazer, Molecules 2018, 23, 632.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. S. Ricciardi, R. Bahal, J. S. Farrelly, E. Quijano, A. H. Bianchi, V. L. Luks, R. Putman, F. Lopez-Giraldez, S. Coskun, E. Song, Y. Liu, W.-C. Hsieh, D. H. Ly, D. H. Stitelman, P. M. Glazer, W. M. Saltzman, Nat. Commun. 2018, 9, 2481.
         | Crossref | GoogleScholarGoogle Scholar | 29946143PubMed |

[8]  S. Montazersaheb, M. S. Hejazi, H. Nozad Charoudeh, Adv. Pharm. Bull. 2018, 8, 551.
         | Crossref | GoogleScholarGoogle Scholar | 30607328PubMed |

[9]  H. T. Lee, S. K. Kim, J. W. Yoon, J. Microbiol. 2019, 57, 423.
         | Crossref | GoogleScholarGoogle Scholar | 31054136PubMed |

[10]  A. P. Falanga, V. Cerullo, M. Marzano, S. Feola, G. Oliviero, G. Piccialli, N. Borbone, Bioconjug. Chem. 2019, 30, 572.
         | Crossref | GoogleScholarGoogle Scholar | 30620563PubMed |

[11]  R. D’Agata, M. C. Giuffrida, G. Spoto, Molecules 2017, 22, 1951.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. Saarbach, P. M. Sabale, N. Winssinger, Curr. Opin. Chem. Biol. 2019, 52, 112.
         | Crossref | GoogleScholarGoogle Scholar | 31541865PubMed |

[13]  A. Gupta, A. Mishra, N. Puri, J. Biotechnol. 2017, 259, 148.
         | Crossref | GoogleScholarGoogle Scholar | 28764969PubMed |

[14]  H. Narenji, P. Gholizadeh, M. Aghazadeh, M. A. Rezaee, M. Asgharzadeh, H. S. Kafil, Biomed. Pharmacother. 2017, 93, 580.
         | Crossref | GoogleScholarGoogle Scholar | 28686972PubMed |

[15]  H. Shi, F. Yang, W. Li, W. Zhao, K. Nie, B. Dong, Z. Liu, Biosens. Bioelectron. 2015, 66, 481.
         | Crossref | GoogleScholarGoogle Scholar | 25499661PubMed |

[16]  B. Sahu, I. Sacui, S. Rapireddy, K. J. Zanotti, R. Bahal, B. A. Armitage, D. H. Ly, J. Org. Chem. 2011, 76, 5614.
         | Crossref | GoogleScholarGoogle Scholar | 21619025PubMed |

[17]  B. Dong, K. Nie, H. Shi, W. Li, Z. Liu, Curr. Org. Chem. 2016, 20, 2703.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. Bahal, B. Sahu, S. Rapireddy, C.-M. Lee, D. H. Ly, ChemBioChem 2012, 13, 56.
         | Crossref | GoogleScholarGoogle Scholar | 22135012PubMed |

[19]  B. Dong, K. Nie, H. Shi, X. Yao, L. Chao, B. Liang, Z. Liu, Tetrahedron Lett. 2019, 60, 1430.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  B. Dong, K. Nie, H. Shi, L. Chao, M. Ma, F. Gao, B. Liang, W. Chen, M. Long, Z. Liu, Biosens. Bioelectron. 2019, 136, 1.
         | Crossref | GoogleScholarGoogle Scholar | 31026759PubMed |

[21]  S. P. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, D. Solas, Science 1991, 251, 767.
         | Crossref | GoogleScholarGoogle Scholar | 1990438PubMed |

[22]  H. Shi, F. Yang, Y. Niu, Y. Wu, H. Wang, Z. Liu, B. Liang, J. Nanosci. Nanotechnol. 2015, 15, 2650.
         | Crossref | GoogleScholarGoogle Scholar | 26353477PubMed |

[23]  Z. C. Liu, D. S. Shin, K. T. Lee, B. H. Jun, Y. K. Kim, Y. S. Lee, Tetrahedron 2005, 61, 7967.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Z. C. Liu, D. S. Shin, M. Shokouhimehr, K. N. Lee, B. W. Yoo, Y. K. Kim, Y. S. Lee, Biosens. Bioelectron. 2007, 22, 2891.
         | Crossref | GoogleScholarGoogle Scholar | 17236754PubMed |

[25]  F. P. Yang, B. Dong, K. X. Nie, H. H. Shi, Y. Q. Wu, H. Y. Wang, Z. C. Liu, ACS Comb. Sci. 2015, 17, 608.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  N. Kretschy, A.-K. Holik, V. Somoza, K.-P. Stengele, M. M. Somoza, Angew. Chem. Int. Ed. 2015, 54, 8555.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Sack, K. Hoelz, A.-K. Holik, N. Kretschy, V. Somoza, K.-P. Stengele, M. M. Somoza, J. Nanobiotechnology 2016, 14, 14.
         | Crossref | GoogleScholarGoogle Scholar | 26936369PubMed |

[28]  K. P. Stengele, U.S. Patent 2016060286 (A1) 2016.