Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The pKa of Pentazole (HN5)

Sanjeev Rachuru https://orcid.org/0000-0002-6117-7112 A , Jagannadham Vandanapu https://orcid.org/0000-0001-9152-7729 B D and Adam A. Skelton https://orcid.org/0000-0003-0155-8287 C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal-501301, Telangana, India.

B Department of Chemistry, Osmania University, Hyderabad-500007, India.

C Department of Pharmacy, School of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa.

D Corresponding author. Email: jagannadham1950@yahoo.com

Australian Journal of Chemistry 74(8) 584-590 https://doi.org/10.1071/CH21014
Submitted: 11 January 2021  Accepted: 4 May 2021   Published: 28 May 2021

Abstract

Pentazole having the molecular formula HN5 is an archetypical five-membered homocyclic inorganic aromatic molecule consisting of five nitrogen atoms. A hydrogen atom is bonded to one of the nitrogens. Even though the molecule does not contain a carbon it appears last in the series of the heterocyclic azole family; the family containing one to five nitrogen atoms. This series of heterocyclic azoles is pyrrole, imidazole, pyrazole, triazole, tetrazole, and the last one is the pentazole. Barring pentazole, the rest of the members of the azole family are heterocyclic organic molecules. The pKa of N(1)H-acidity values of all the azole members are known, except for that of pentazole. In the present work we endeavoured to determine the pKa of pentazole by a graphical method and by performing theoretical DFT calculations.

Keywords: pentazole, pKa, DFT.


References

[1]  J. Lipchitz, Ber. Dtsch. Chem. Ges. 1915, 48, 410.

[2]  T. Curtius, A. Darapsky, E. Miiller, Ber. Dtsch. Chem. Ges. 1915, 48, 1614.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. D. Wallis, J. D. Dunitz, J. Chem. Soc. Chem. Commun. 1983, 910.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. F. Ferris, R. J. Bartlett, J. Am. Chem. Soc. 1992, 114, 8302.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  C. Chen, Int. J. Quantum Chem. 2000, 80, 27.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Vij, J. G. Pavlovich, W. W. Wilson, V. Vij, K. O. Christe, Angew. Chem. Int. Ed. 2002, 41, 3051.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. Ostmark, S. Wallin, T. Brinck, P. Carlqvist, R. Claridge, E. Hedlund, L. Yudina, Chem. Phys. Lett. 2003, 379, 539.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  R. N. Butler, J. C. Stephens, L. A. Burke, Chem. Comms. 2003, 1016.

[9]  R. N. Butler, J. M. Hanniffy, J. C. Stephens, L. A. Burke, J. Org. Chem. 2008, 73, 1354.
         | Crossref | GoogleScholarGoogle Scholar | 18198892PubMed |

[10]  S. Ajith Perera, A Gregusova, R. J. Bartlett, J. Phys. Chem. A 2009, 113, 3197.

[11]  B. Bazanov, U. Geiger, R. Carmieli, D. Grinstein, S. Welner, Y. Haas, Angew. Chem. Int. Ed. 2016, 55, 13233.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  See pp. 146 and 147 In A. R. Katritzky, C. A. Ramsden, J. A. Joule, V. V. Zhdankin, Handbook of Heterocyclic Chemistry, 3rd edn 2010 (Elsevier: Amsterdam).

[13]  K. W. Whitten, K. D. Gailey, R. E. Davis, General Chemistry, 4th edn 1992 (Saunders College Publishing).

[14]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01 2009 (Gaussian, Inc.: Wallingford, CT).

[15]  R. Sanjeev, R. Ravi, V. Jagannadham, A. A. Skelton, Aust. J. Chem. 2017, 70, 90.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  P. Lian, R. C. Johnston, J. M. Parks, J. C. Smith, J. Phys. Chem. A 2018, 122, 4366.
         | Crossref | GoogleScholarGoogle Scholar | 29633840PubMed |

[17]  B. Thapa, H. B. Schlegel, J. Phys. Chem. A 2016, 120, 5726.
         | Crossref | GoogleScholarGoogle Scholar | 27327957PubMed |

[18]  D. M. Camaioni, C. A. Schwerdtfeger, J. Phys. Chem. A 2005, 109, 10795.
         | Crossref | GoogleScholarGoogle Scholar | 16863129PubMed |

[19]  A. A. Isse, A. Gennaro, J. Phys. Chem. B 2010, 114, 7894.
         | Crossref | GoogleScholarGoogle Scholar | 20496903PubMed |

[20]  C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2006, 110, 16066.
         | Crossref | GoogleScholarGoogle Scholar | 16898764PubMed |

[21]  A. V. Marenich, J. Ho, M. L. Coote, C. J. Cramer, D. G. Truhlar, Physiol. Chem. Phys. 2014, 16, 15068.

[22]  A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
         | Crossref | GoogleScholarGoogle Scholar | 19366259PubMed |

[23]  J. L. Pascual-Ahuir, E. Silla, J. Comput. Chem. 1990, 11, 1047.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  C. S. Pomelli, J. Tomasi, R. Cammi, J. Comput. Chem. 2001, 22, 1262.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  L. Frediani, R. Cammi, C. S. Pomelli, J. Tomasi, K. Ruud, J. Comput. Chem. 2004, 25, 375.
         | Crossref | GoogleScholarGoogle Scholar | 14696072PubMed |

[26]  G. Scalmani, N. Rega, M. Cossi, V. Barone, J. Comput. Methods Sci. Eng. 2002, 2, 469.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  I. E. Charif, S. M. Mekelleche, D. Villemin, N. Mora-Diez, J. Mol. Struct. THEOCHEM 2007, 818, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  See p. A22 (93) 453 in: W. Gerhartz, Ullmann’s Encyclopedia of Industrial Chemistry, 5th edn, Vol. A1 1985 (VCH Publishers: Deerfield Beach, FL).

[29]  D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution. IUPAC Chem Data Series 1965 (Butterworth: London).

[30]  I. Koppel, J. Koppel, P.-C. Maria, J.-F. Gal, R. Notario, V. M. Vlasov, R. W. Taft, Int. J. Mass Spectrom. Ion Processes 1998, 175, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  J. Catalan, J.-L. M. Abboud, J. Elguero, Adv. Heterocycl. Chem. 1987, 41, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J.-L. M. Abboud, C. Foces-Foces, R. Notario, R. E. Trifonov, A. P. Volovodenko, V. A. Ostrovskii, I. Alkorta, J. Elguero, Eur. J. Org. Chem. 2001, 3013.

[33]  P. J. Garratt, in Comprehensive Heterocyclic Chemistry II (Eds A. R. Katritzky, C. W. Rees, E. F. V. Scriven) 1996, pp. 127–163 (Elsevier: Amsterdam).

[34]  R. E. Trifonov, V. A. Ostrovskii, Russ. J. Org. Chem. 2006, 42, 1585.
         | Crossref | GoogleScholarGoogle Scholar |