Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

The potential of classical antibacterial peptides in mammalian antiviral chemotherapy

Laszlo Otvos Jr https://orcid.org/0000-0002-6759-235X A B *
+ Author Affiliations
- Author Affiliations

A OLPE Pharmaceutical Consultants, Audubon, PA, USA.

B Institute of Chemical Microbiology, Semmelweis Medical School, Budapest, Hungary.




Dr Laszlo Otvos developed novel chemical technologies to identify and characterize immunologically active peptides, antimicrobial peptides and peptidic modulators of adipokine receptor responses. He joined the Wistar Institute in 1995, and after 20 years he moved to Temple University as a Research Professor in Biology. Currently, he is president of OLPE, LLC, a consulting firm focusing on peptide- and protein-based drug development and adjunct professor at Semmelweis University, Queensland University of Technology and Florida Atlantic University. An author of 270 peer-reviewed papers with an h-index of 73, Dr Laszlo Otvos is an editor for Frontiers in Chemical Biology.

* Correspondence to: lotvos@comcast.net

Handling Editor: Ed Nice

Australian Journal of Chemistry 78, CH25047 https://doi.org/10.1071/CH25047
Submitted: 6 April 2025  Accepted: 15 September 2025  Published online: 20 October 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Classical antimicrobial peptides (AMPs) were historically isolated from natural sources and selected based on their ability to kill bacteria in vitro. With viral infections being increasingly recognized as a major health-care threat, especially after the COVID-19 pandemic, a label extension was attempted to use AMPs as anti-viral agents. This hypothesis is based on the various modes of action of AMPs, including membrane disintegration (for enveloped viruses), direct protein or nucleic acid targets or host defense functions. Although some of the classical AMPs indeed have deleterious effects on viral assembly and propagation, their in vitro activity levels (20–50 µg mL–1) against viruses are inferior to their anti-bacterial properties. Even when some anti-viral activity is found, the mode of action speculations seem to be more guesses than conclusions from well-controlled assays. Very few AMPs were tested for anti-viral efficacy in mammals, and the results are less than encouraging for clinical development. Peptide therapeutics designed or identified directly for virology research appear to be superior to AMPs label extensions.

Keywords: anti-virus therapy, antiviral chemotherapy, classical antimicrobial peptides, host survival, mammalian antiviral chemotherapy, viral envelope, virus assembly and propagation.

Biographies

CH25047_B1.gif

Dr Laszlo Otvos developed novel chemical technologies to identify and characterize immunologically active peptides, antimicrobial peptides and peptidic modulators of adipokine receptor responses. He joined the Wistar Institute in 1995, and after 20 years he moved to Temple University as a Research Professor in Biology. Currently, he is president of OLPE, LLC, a consulting firm focusing on peptide- and protein-based drug development and adjunct professor at Semmelweis University, Queensland University of Technology and Florida Atlantic University. An author of 270 peer-reviewed papers with an h-index of 73, Dr Laszlo Otvos is an editor for Frontiers in Chemical Biology.

References

Dubos RJ. Studies on a bactericidal agent extracted from a soil Bacillus: I. preparation of the agent. Its activity in vitro. J Exp Med 1939; 70(1): 1-10.
| Crossref | Google Scholar | PubMed |

Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 2021; 11: 668632.
| Crossref | Google Scholar | PubMed |

Dubos RJ, Hotchkiss RD. The production of bactericidal substances by aerobic sporulating bacilli. J Exp Med 1941; 73(5): 629-640.
| Crossref | Google Scholar | PubMed |

Liou JW, Hung YJ, Yang CH, Chen YC. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation. PLoS ONE 2015; 10(1): e0117065.
| Crossref | Google Scholar | PubMed |

Van Epps HL. René Dubos: unearthing antibiotics. J Exp Med 2006; 203(2): 259.
| Crossref | Google Scholar | PubMed |

Hotchkiss RD, Dubos RJ. Fractionation of the bactericidal agent from cultures of soil bacillus. J Biol Chem 1940; 132(2): 791-792.
| Crossref | Google Scholar |

Otvos L, Jr, Wade JD. Big peptide drugs in a small molecule world. Front Chem 2023; 11: 1302169.
| Crossref | Google Scholar | PubMed |

Hopfer RL, Mehta R, Lopez-Berestein G. Synergistic antifungal activity and reduced toxicity of liposomal amphotericin B combined with gramicidin S or NF. Antimicrob Agents Chemother 1987; 31(12): 1978-1981.
| Crossref | Google Scholar | PubMed |

Otvos L, Jr. The short proline-rich antibacterial peptide family. Cell Mol Life Sci 2002; 59(7): 1138-1150.
| Crossref | Google Scholar | PubMed |

10  Vaara M. New approaches in peptide antibiotics. Curr Opin Pharmacol 2009; 9(5): 571-576.
| Crossref | Google Scholar | PubMed |

11  Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA 1991; 88(9): 3792-3796.
| Crossref | Google Scholar | PubMed |

12  Moore AJ, Devine DA, Bibby MC. Preliminary experimental anticancer activity of cecropins. Pept Res 1994; 7(5): 265-269.
| Google Scholar | PubMed |

13  Chen T, Wang Y, Yang Y, et al. Gramicidin inhibits human gastric cancer cell proliferation, cell cycle and induced apoptosis. Biol Res 2019; 52: 57.
| Crossref | Google Scholar | PubMed |

14  Otvos L, Jr. Host defense peptides and cancer; perspectives on research design and outcomes. Protein Pept Lett 2017; 24(10): 879-886.
| Crossref | Google Scholar | PubMed |

15  David JM, Rajasekaran AK. Gramicidin A: a new mission for an old antibiotic. J. Kidney Cancer 2015; 2(1): 15-24.
| Crossref | Google Scholar | PubMed |

16  Enayathullah MG, Parekh Y, Banu S, et al. Gramicidin S and melittin: potential anti-viral therapeutic peptides to treat SARS-CoV-2 infection. Sci Rep 2022; 12: 3446.
| Crossref | Google Scholar | PubMed |

17  Bourinbaiar AS, Krasinski K, Borkowsky W. Anti-HIV effect of gramicidin in vitro: potential for spermicide use. Life Sci 1994; 54(1): PL5-9.
| Crossref | Google Scholar | PubMed |

18  Bourinbaiar AS, Coleman CF. The effect of gramicidin, a topical contraceptive and antimicrobial agent with anti-HIV activity against herpes simplex viruses type 1 and 2 in vitro. Arch Virol 1997; 142: 2225-2235.
| Crossref | Google Scholar | PubMed |

19  Loffredo MR, Nencioni L, Mangoni ML, Casciaro B. Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic. J Pept Sci 2024; 30(1): e3534.
| Crossref | Google Scholar | PubMed |

20  Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48(Suppl 1): 5-16.
| Crossref | Google Scholar | PubMed |

21  Sani MA, Separovic F. How membrane-active peptides get into lipid membranes. Acc Chem Res 2016; 49(6): 1130-1138.
| Crossref | Google Scholar |

22  Fenner F, Bachmann PA, Gibbs EPJ, Murphy FA, Studdert MJ, White DO. Chapter 1 – Structure and composition of viruses. In: Fenner F, Bachmann PA, Gibbs EPJ, Murphy FA, Stuggert MJ, White DO, editors. Veterinary Virology. Academic Press; 1987. pp. 3–19. doi:10.1016/B978-0-12-253055-5.50005-0.

23  Benfield AH, Henriques ST. Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms. Front Med Technol 2020; 2: 610997.
| Crossref | Google Scholar | PubMed |

24  Faust JE, Yang PY, Huang HW. Action of antimicrobial peptides on bacterial and lipid membranes: a direct comparison. Biophys J 2017; 112(8): 1663-1672.
| Crossref | Google Scholar | PubMed |

25  Bechinger B, Zasloff M, Opella SJ. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci 1993; 2(12): 2077-2084.
| Crossref | Google Scholar | PubMed |

26  Lee TH, Hall KN, Aguilar MI. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 2016; 16(1): 25-39.
| Crossref | Google Scholar | PubMed |

27  Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 2001; 81(3): 1475-1485.
| Crossref | Google Scholar | PubMed |

28  Moghal MMR, Hossain F, Yamazaki M. Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method. Biophys Rev 2020; 12(2): 339-348.
| Crossref | Google Scholar | PubMed |

29  Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, Zettor A, Bourgouin C, Langel U, Faye I, Otvos L, Wade JD, Coulibaly MB, Traore SF, Tripet F, Eggleston P, Hurd H. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog 2013; 9(11): e1003790.
| Crossref | Google Scholar | PubMed |

30  Otvos L, Jr, Cudic M, Chua BY, Deliyannis G, Jackson DC. An insect antibacterial peptide-based drug delivery system. Mol Pharm 2004; 1(3): 220-232.
| Crossref | Google Scholar | PubMed |

31  Krizsan A, Volke D, Weinert S, Sträter N, Knappe D, Hoffmann R. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew Chem Int Ed Engl 2014; 53(45): 12236-12239.
| Crossref | Google Scholar | PubMed |

32  Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 1993; 61(7): 2978-2984.
| Crossref | Google Scholar | PubMed |

33  Xiong YQ, Yeaman MR, Bayer AS. In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother 1999; 43(5): 1111-1117.
| Crossref | Google Scholar | PubMed |

34  Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM, Fucini P. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol Cell 2008; 30(1): 26-38.
| Crossref | Google Scholar | PubMed |

35  Otvos L, Jr, O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000; 39(46): 14150-14159.
| Crossref | Google Scholar | PubMed |

36  Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L, Jr. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001; 40(10): 3016-3026.
| Crossref | Google Scholar | PubMed |

37  Wu S, Zhao Y, Wang D, Chen Z. Mode of action of heat shock protein (HSP) inhibitors against viruses through host HSP and virus interactions. Genes 2023; 14(4): 792.
| Crossref | Google Scholar | PubMed |

38  Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, Arumugaswami V, Sun R, Dasgupta A, French SW. The heat shock protein inhibitor Quercetin attenuates hepatitis C virus production. Hepatology 2009; 50(6): 1756-1764.
| Crossref | Google Scholar | PubMed |

39  Luo X, Zhu W, Ding L, Ye X, Gao H, Tai X, Wu Z, Qian Y, Ruan X, Li J, Li S, Chen Z. Bldesin, the first functionally characterized pathogenic fungus defensin with Kv1.3 channel and chymotrypsin inhibitory activities. J Biochem Mol Toxicol 2019; 33(2): e22244.
| Crossref | Google Scholar | PubMed |

40  Bierbaum G, Sahl HG. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol 1987; 169(12): 5452-5458.
| Crossref | Google Scholar | PubMed |

41  Di Somma A, Avitabile C, Cirillo A, Moretta A, Merlino A, Paduano L, Duilio A, Romanelli A. The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex. Biochim Biophys Acta Gen Subj 2020; 1864(7): 129606.
| Crossref | Google Scholar | PubMed |

42  Ray S, Dhaked HP, Panda D. Antimicrobial peptide CRAMP (16-33) stalls bacterial cytokinesis by inhibiting FtsZ assembly. Biochemistry 2014; 53(41): 6426-6429.
| Crossref | Google Scholar | PubMed |

43  Gagandeep KR, Narasingappa RB, Vyas GV. Unveiling mechanisms of antimicrobial peptide: actions beyond the membranes disruption. Heliyon 2024; 10(19): e38079.
| Crossref | Google Scholar |

44  Hancock RE, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 2016; 16: 321-334.
| Crossref | Google Scholar | PubMed |

45  Ostorhazi E, Holub MC, Rozgonyi F, Harmos F, Cassone M, Wade JD, Otvos L, Jr. Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents 2011; 37(5): 480-484.
| Crossref | Google Scholar | PubMed |

46  Ridyard KE, Overhage J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics 2021; 10(6): 650.
| Crossref | Google Scholar | PubMed |

47  Svensson D, Nilsson BO. Human antimicrobial/host defense peptide LL-37 may prevent the spread of a local infection through multiple mechanisms: an update. Inflamm Res 2025; 74: 36.
| Crossref | Google Scholar | PubMed |

48  Barlow PG, Findlay EG, Currie SM, Davidson DJ. Antiviral potential of cathelicidins. Future Microbiol 2014; 9(1): 55-73.
| Crossref | Google Scholar | PubMed |

49  Ostorhazi E, Voros E, Nemes-Nikodem E, Pinter D, Sillo P, Mayer B, Wade JD, Otvos L, Jr. Rapid systemic and local treatments with the antibacterial peptide dimer A3-APO and its monomeric metabolite eliminate bacteria and reduce inflammation in intradermal lesions infected with Propionibacterium acnes and methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2013; 42(6): 537-543.
| Crossref | Google Scholar | PubMed |

50  Otvos L, Jr, Ostorhazi E. Therapeutic utility of antibacterial peptides in wound healing. Expert Rev Anti Infect Ther 2015; 13(7): 871-881.
| Crossref | Google Scholar | PubMed |

51  Otvos L, Jr, Flick-Smith H, Fox M, Ostorhazi E, Dawson RM, Wade JD. The designer proline-rich antibacterial peptide A3-APO prevents Bacillus anthracis mortality by deactivating bacterial toxins. Protein Pept Lett 2014; 21(4): 374-381.
| Crossref | Google Scholar | PubMed |

52  Haney EF, Straus SK, Hancock REW. Reassessing the host defense peptide landscape. Front Chem 2019; 7: 43.
| Crossref | Google Scholar | PubMed |

53  Håversen LA, Engberg I, Baltzer L, Dolphin G, Hanson LA, Mattsby-Baltzer I. Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect Immun 2000; 68(10): 5816-5823.
| Crossref | Google Scholar | PubMed |

54  Ohradanova-Repic A, Skrabana R, Gebetsberger L, Tajti G, Baráth P, Ondrovičová G, Praženicová R, Jantova N, Hrasnova P, Stockinger H, Leksa V. Blockade of TMPRSS2-mediated priming of SARS-CoV-2 by lactoferricin. Front Immunol 2022; 13: 958581.
| Crossref | Google Scholar | PubMed |

55  Babulic P, Cehlar O, Ondrovičová G, Moskalets T, Skrabana R, Leksa V. Lactoferrin binds through its N-terminus to the receptor-binding domain of the SARS-CoV-2 spike protein. Pharmaceuticals 2024; 17(8): 1021.
| Crossref | Google Scholar | PubMed |

56  Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, Davidson DJ, Donis RO. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 2011; 6(10): e25333.
| Crossref | Google Scholar | PubMed |

57  Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2022; 12(4): 735-757.
| Crossref | Google Scholar | PubMed |

58  Hsieh IN, Hartshorn KL. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals 2016; 9(3): 53.
| Crossref | Google Scholar | PubMed |

59  Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines 2020; 8(3): 517.
| Crossref | Google Scholar | PubMed |

60  Neghabi Hajigha M, Hajikhani B, Vaezjalali M, Samadi Kafil H, Kazemzadeh Anari R, Goudarzi M. Antiviral and antibacterial peptides: mechanisms of action. Heliyon 2024; 10(22): e40121.
| Crossref | Google Scholar | PubMed |

61  Mohan KV, Rao SS, Atreya CD. Antiviral activity of selected antimicrobial peptides against vaccinia virus. Antiviral Res 2010; 86(3): 306-311.
| Crossref | Google Scholar | PubMed |

62  Albiol Matanic VC, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 2004; 23(4): 382-389.
| Crossref | Google Scholar | PubMed |

63  Egal M, Conrad M, MacDonald DL, Maloy WL, Motley M, Genco CA. Antiviral effects of synthetic membrane-active peptides on herpes simplex virus, type 1. Int J Antimicrob Agents 1999; 13(1): 57-60.
| Crossref | Google Scholar | PubMed |

64  Aboudy Y, Mendelson E, Shalit I, Bessalle R, Fridkin M. Activity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2. Int J Pept Protein Res 1994; 43(6): 573-582.
| Crossref | Google Scholar | PubMed |

65  Feng M, Fei S, Xia J, Labropoulou V, Swevers L, Sun J. Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Front Immunol 2020; 11: 2030.
| Crossref | Google Scholar | PubMed |

66  Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 2004; 78(10): 5147-5156.
| Crossref | Google Scholar | PubMed |

67  Xu C, Wang A, Marin M, Honnen W, Ramasamy S, Porter E, Subbian S, Pinter A, Melikyan GB, Lu W, Chang TL. Human defensins inhibit SARS-CoV-2 infection by blocking viral entry. Viruses 2021; 13(7): 1246.
| Crossref | Google Scholar | PubMed |

68  Yang F, Ma Y. The application and prospects of antimicrobial peptides in antiviral therapy. Amino Acids 2024; 56(1): 68.
| Crossref | Google Scholar | PubMed |

69  Gilani SJ, Bin-Jumah MN, Nadeem MS, Kazmi I. Vitamin D attenuates COVID-19 complications via modulation of proinflammatory cytokines, antiviral proteins, and autophagy. Expert Rev Anti Infect Ther 2022; 20(2): 231-241.
| Crossref | Google Scholar | PubMed |

70  Brice DC, Diamond G. Antiviral activities of human host defense peptides. Curr Med Chem 2020; 27(9): 1420-1443.
| Crossref | Google Scholar | PubMed |

71  Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT. Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci USA 2006; 103(5): 1516-1521.
| Crossref | Google Scholar | PubMed |

72  Zhang L, Ghosh SK, Basavarajappa SC, Muller-Greven J, Penfield J, Brewer A, Ramakrishnan P, Buck M, Weinberg A. Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells. bioRxiv 2021; 2021: 2021.01.07.425621 [Preprint, published 7 January 2021].
| Crossref | Google Scholar | PubMed |

73  Luan J, Ren Y, Gao S, Zhang L. High level of defensin alpha 5 in intestine may explain the low incidence of diarrhoea in COVID-19 patients. Eur J Gastroenterol Hepatol 2022; 34(1): e3-e4.
| Crossref | Google Scholar | PubMed |

74  Bastian A, Schäfer H. Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept 2001; 101(1–3): 157-161.
| Crossref | Google Scholar | PubMed |

75  Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol 1986; 60(3): 1068-1074.
| Crossref | Google Scholar | PubMed |

76  Cuesta A, Meseguer J, Esteban MA. The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol Immunol 2008; 45(8): 2333-2342.
| Crossref | Google Scholar | PubMed |

77  Chia TJ, Wu YC, Chen JY, Chi SC. Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish Shellfish Immunol 2010; 28(3): 434-439.
| Crossref | Google Scholar | PubMed |

78  Wang YD, Kung CW, Chen JY. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1-5 against nervous necrosis virus in medaka. Peptides 2010; 31(6): 1026-1033.
| Crossref | Google Scholar | PubMed |

79  Dash R, Bhattacharjya S. Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action. Int J Mol Sci 2021; 22(4): 1522.
| Crossref | Google Scholar | PubMed |

80  Sabokkhiz MA, Tanhaeian A, Mamarabadi M. Study on antiviral activity of two recombinant antimicrobial peptides against tobacco mosaic virus. Probiotics Antimicrob Proteins 2019; 11(4): 1370-1378.
| Crossref | Google Scholar | PubMed |

81  Memariani H, Memariani M, Moravvej H, Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis 2020; 39(1): 5-17.
| Crossref | Google Scholar | PubMed |

82  Chen J, Guan SM, Sun W, Fu H. Melittin, the major pain-producing substance of bee venom. Neurosci Bull 2016; 32(3): 265-272.
| Crossref | Google Scholar | PubMed |

83  Moura ECCM, Baeta T, Romanelli A, Laguri C, Martorana AM, Erba E, Simorre JP, Sperandeo P, Polissi A. Thanatin impairs lipopolysaccharide transport complex assembly by targeting LptC-LptA interaction and decreasing LptA stability. Front Microbiol 2020; 11: 909.
| Crossref | Google Scholar | PubMed |

84  Rozgonyi F, Szabo D, Kocsis B, Ostorházi E, Abbadessa G, Cassone M, Wade JD, Otvos L, Jr. The antibacterial effect of a proline-rich antibacterial peptide A3-APO. Curr Med Chem 2009; 16(30): 3996-4002.
| Crossref | Google Scholar | PubMed |

85  Eker F, Duman H, Ertürk M, Karav S. The potential of lactoferrin as antiviral and immune-modulating agent in viral infectious diseases. Front Immunol 2024; 15: 1402135.
| Crossref | Google Scholar | PubMed |

86  Duan Z, Zhang J, Chen X, Liu M, Zhao H, Jin L, Zhang Z, Luan N, Meng P, Wang J, Tan Z, Li Y, Deng G, Lai R. Role of LL-37 in thrombotic complications in patients with COVID-19. Cell Mol Life Sci 2022; 79(6): 309.
| Crossref | Google Scholar | PubMed |

87  Otvos L. The latest trends in peptide drug discovery and future challenges. Expert Opin Drug Discov 2024; 19(8): 869-872.
| Crossref | Google Scholar | PubMed |

88  Agarwal G, Gabrani R. Antiviral peptides: identification and validation. Int J Pept Res Ther 2021; 27(1): 149-168.
| Crossref | Google Scholar | PubMed |

89  Lalezari JP, Luber AD. Enfuvirtide. Drugs Today 2004; 40(3): 259-269.
| Crossref | Google Scholar | PubMed |

90  Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, Kostolansky F, Vareckova E, Zitka O, Adam V, Kizek R. Perspective of use of antiviral peptides against influenza virus. Viruses 2015; 7(10): 5428-5442.
| Crossref | Google Scholar | PubMed |

91  Jenssen H. Therapeutic approaches using host defence peptides to tackle herpes virus infections. Viruses 2009; 1: 939-964.
| Crossref | Google Scholar | PubMed |