Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Dendronised Polymers as Templates for In Situ Quantum Dot Synthesis

Alaa M. Munshi A B , Jessica A. Kretzmann https://orcid.org/0000-0002-8680-7766 A , Cameron W. Evans https://orcid.org/0000-0003-2312-9803 A , Anna M. Ranieri https://orcid.org/0000-0002-4612-2121 C , Zibeon Schildkraut A , Massimiliano Massi https://orcid.org/0000-0001-6949-4019 C , Marck Norret https://orcid.org/0000-0001-7540-1368 A , Martin Saunders https://orcid.org/0000-0001-6873-7816 D and K. Swaminathan Iyer https://orcid.org/0000-0001-9329-4930 A E
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955, Mecca, Makkah Province, Saudi Arabia.

C Department of Chemistry and Nanochemistry Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia.

D Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

E Corresponding author. Email: swaminatha.iyer@uwa.edu.au

Australian Journal of Chemistry 73(7) 658-663 https://doi.org/10.1071/CH20071
Submitted: 3 March 2020  Accepted: 7 April 2020   Published: 16 June 2020

Abstract

The utility of dendrimers as effective carriers for targeted drug delivery and imaging has been facilitated by a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, and multivalency. Dendrimer–quantum dot (QD) nanocomposites have traditionally been synthesised by electrostatic self-assembly of preformed dendrimers and QDs, but higher generations are associated with limited flexibility and increased cytotoxicity. In this paper, we report the fabrication of CdTe QD nanoparticles using a dendronised linear copolymer bearing thiolated fourth-generation poly(amido amine) (PAMAM) dendrons as the capping and stabilising agent. We demonstrate this approach enables synthesis of nanocomposites with aqueous and photophysical stability.


References

[1]  Z. Luo, Q. Qi, L. Zhang, R. Zeng, L. Su, D. Tang, Anal. Chem. 2019, 91, 4149.
         | Crossref | GoogleScholarGoogle Scholar | 30793581PubMed |

[2]  Z. Yu, Y. Tang, G. Cai, R. Ren, D. Tang, Anal. Chem. 2019, 91, 1222.
         | Crossref | GoogleScholarGoogle Scholar | 30569701PubMed |

[3]  R. Zeng, Z. Luo, L. Su, L. Zhang, D. Tang, R. Niessner, D. Knopp, Anal. Chem. 2019, 91, 2447.
         | Crossref | GoogleScholarGoogle Scholar | 30609356PubMed |

[4]  W. C. Chan, S. Nie, Science 1998, 281, 2016.
         | Crossref | GoogleScholarGoogle Scholar | 9748158PubMed |

[5]  M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998, 281, 2013.
         | Crossref | GoogleScholarGoogle Scholar | 9748157PubMed |

[6]  X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol. 2003, 21, 41.
         | Crossref | GoogleScholarGoogle Scholar | 12459735PubMed |

[7]  W. R. Algar, A. J. Tavares, U. J. Krull, Anal. Chim. Acta 2010, 673, 1.
         | Crossref | GoogleScholarGoogle Scholar | 20630173PubMed |

[8]  S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, I. D. Tomlinson, Chem. Biol. 2011, 18, 10.
         | Crossref | GoogleScholarGoogle Scholar | 21276935PubMed |

[9]  K. Grieve, P. Mulvaney, F. Grieser, Curr. Opin. Colloid Interface Sci. 2000, 5, 168.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
         | Crossref | GoogleScholarGoogle Scholar | 15928695PubMed |

[11]  P. Zrazhevskiy, M. Sena, X. Gao, Chem. Soc. Rev. 2010, 39, 4326.
         | Crossref | GoogleScholarGoogle Scholar | 20697629PubMed |

[12]  L. Zhang, Z. Luo, R. Zeng, Q. Zhou, D. Tang, Biosens. Bioelectron. 2019, 134, 1.
         | Crossref | GoogleScholarGoogle Scholar | 30947036PubMed |

[13]  G. Cai, Z. Yu, R. Ren, D. Tang, ACS Sens. 2018, 3, 632.
         | Crossref | GoogleScholarGoogle Scholar | 29465232PubMed |

[14]  Z. Luo, L. Zhang, R. Zeng, L. Su, D. Tang, Anal. Chem. 2018, 90, 9568.
         | Crossref | GoogleScholarGoogle Scholar | 29938508PubMed |

[15]  J. Shu, D. Tang, Chem. Asian J. 2017, 12, 2780.
         | Crossref | GoogleScholarGoogle Scholar | 28880459PubMed |

[16]  R. Freeman, I. Willner, Chem. Soc. Rev. 2012, 41, 4067.
         | Crossref | GoogleScholarGoogle Scholar | 22481608PubMed |

[17]  N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 2002, 106, 7177.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Qian, C. Dong, J. Weng, J. Ren, Small 2006, 2, 747.
         | Crossref | GoogleScholarGoogle Scholar | 17193117PubMed |

[19]  S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, C. de Mello Donegá, Nano Lett. 2003, 3, 503.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  N. Tomczak, D. Jańczewski, M. Han, G. J. Vancso, Prog. Polym. Sci. 2009, 34, 393.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11.
         | Crossref | GoogleScholarGoogle Scholar | 28890669PubMed |

[22]  S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466.
         | Crossref | GoogleScholarGoogle Scholar | 13129327PubMed |

[23]  L. Zhou, C. Gao, W. Xu, X. Wang, Y. Xu, Biomacromolecules 2009, 10, 1865.
         | Crossref | GoogleScholarGoogle Scholar | 19496613PubMed |

[24]  S.-W. Kim, S. Kim, J. B. Tracy, A. Jasanoff, M. G. Bawendi, J. Am. Chem. Soc. 2005, 127, 4556.
         | Crossref | GoogleScholarGoogle Scholar | 15796504PubMed |

[25]  D. A. Tomalia, A. M. Naylor, W. A. Goddard, Angew. Chem. Int. Ed. Engl. 1990, 29, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  B. Klajnert, M. Bryszewska, Acta Biochim. Pol. 2001, 48, 199.
         | Crossref | GoogleScholarGoogle Scholar | 11440170PubMed |

[27]  N. J. Wells, A. Basso, M. Bradley, Pept. Sci. 1998, 47, 381.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  Y. Zeng, C. Tang, G. Tian, P. Yi, H. Huang, N. Hu, S. Li, H. Huang, C. Li, B. Lin, X. Yu, Y. Ling, X. Xia, Chem. Eng. J. 2010, 156, 524.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 2010, 110, 1857.
         | Crossref | GoogleScholarGoogle Scholar | 20356105PubMed |

[30]  K. Esumi, H. Houdatsu, T. Yoshimura, Langmuir 2004, 20, 2536.
         | Crossref | GoogleScholarGoogle Scholar | 15835119PubMed |

[31]  S. H. Wang, X. Shi, M. Van Antwerp, Z. Cao, S. D. Swanson, X. Bi, J. R. Baker, Adv. Funct. Mater. 2007, 17, 3043.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Q. Li, J. Jin, F. Lou, D. Tang, Sci. China Chem. 2018, 61, 750.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  D. Tang, L. Hou, R. Niessner, M. Xu, Z. Gao, D. Knopp, Biosens. Bioelectron. 2013, 46, 37.
         | Crossref | GoogleScholarGoogle Scholar | 23500474PubMed |

[34]  N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J. W. Weener, E. W. Meijer, W. Paulus, R. Duncan, J. Controlled Release 2000, 65, 133.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. A. Kretzmann, D. Ho, C. W. Evans, J. H. C. Plani-Lam, B. Garcia-Bloj, A. E. Mohamed, M. L. O’Mara, E. Ford, D. E. K. Tan, R. Lister, P. Blancafort, M. Norret, K. S. Iyer, Chem. Sci. 2017, 8, 2923.
         | Crossref | GoogleScholarGoogle Scholar | 28451358PubMed |

[36]  S. Ghosh, A. Saha, Nanoscale Res. Lett. 2009, 4, 937.
         | Crossref | GoogleScholarGoogle Scholar | 20596492PubMed |

[37]  Y. Shi, J. Wang, S. Li, Z. Wang, X. Zang, X. Zu, X. Zhang, F. Guo, G. Tong, J. Mater. Res. 2013, 28, 1940.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. Priyam, S. Ghosh, S. C. Bhattacharya, A. Saha, J. Colloid Interface Sci. 2009, 333, 195.
         | Crossref | GoogleScholarGoogle Scholar | 19233381PubMed |

[39]  A. C. Wisher, I. Bronstein, V. Chechik, Chem. Commun. 2006, 1637.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  J. Haensler, F. C. Szoka, Bioconjug. Chem. 1993, 4, 372.
         | Crossref | GoogleScholarGoogle Scholar | 8274523PubMed |

[41]  U. Lächelt, E. Wagner, Chem. Rev. 2015, 115, 11043.
         | Crossref | GoogleScholarGoogle Scholar | 25872804PubMed |

[42]  J. V. M. Weaver, I. Bannister, K. L. Robinson, X. Bories-Azeau, S. P. Armes, M. Smallridge, P. McKenna, Macromolecules 2004, 37, 2395.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Biomaterials 2005, 26, 4767.
         | Crossref | GoogleScholarGoogle Scholar | 15763256PubMed |

[44]  S. Connolly, S. N. Rao, D. Fitzmaurice, J. Phys. Chem. B 2000, 104, 4765.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  S. F. Wuister, C. de Mello Donegá, A. Meijerink, J. Am. Chem. Soc. 2004, 126, 10397.
         | Crossref | GoogleScholarGoogle Scholar | 15315455PubMed |

[46]  W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 2003, 15, 2854.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  S. T. Malak, Y. J. Yoon, M. J. Smith, C. H. Lin, J. Jung, Z. Lin, V. V. Tsukruk, ACS Photonics 2017, 4, 1691.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  N. F. Borrelli, D. W. Hall, H. J. Holland, D. W. Smith, J. Appl. Phys. 1987, 61, 5399.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  Y. Masumoto, K. Sonobe, Phys. Rev. B Condens. Matter 1997, 56, 9734.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  M. Algarra, B. B. Campos, M. S. Miranda, J. C. G. E. da Silva, Talanta 2011, 83, 1335.
         | Crossref | GoogleScholarGoogle Scholar | 21238718PubMed |

[51]  X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Nano Lett. 2003, 3, 1103.
         | Crossref | GoogleScholarGoogle Scholar |