Intermediates in the Formation and Thermolysis of Peroxides from Oxidations with Singlet Oxygen
Werner Fudickar A and Torsten Linker A BA Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany.
B Corresponding author. Email: linker@uni-potsdam.de
Australian Journal of Chemistry 67(3) 320-327 https://doi.org/10.1071/CH13423
Submitted: 15 August 2013 Accepted: 3 October 2013 Published: 30 October 2013
Abstract
Herein we describe the recent mechanistic understandings of the singlet oxygen ene reaction to give hydroperoxides and the [4+2] cycloaddition affording endoperoxides. Both experimental findings and theoretical work conclude in the formation of intermediates structurally similar to perepoxides during the ene reaction. Such intermediates mainly control the regio- and stereoselectivities of this reaction class. For the [4+2] cycloaddition, both a synchronous concerted reaction (benzene, naphthalenes) and a stepwise reaction with a non-symmetric zwitterionic intermediate (larger acenes) have been found. The thermolysis of endoperoxides derived from acenes proceeds stepwise for anthracenes, but in a concerted manner for less stable adducts such as naphthalene.
References
[1] Singlet Oxygen (Ed. A. A. Frimer) 1985 (CRC Press: Boca Raton, FL).[2] A. G. Griesbeck, T. T. El-Idressy, M. Fliege, R. Brun, Org. Lett. 2002, 4, 4193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFKktbs%3D&md5=549ed1b29e043b8ab15cd76a0e744b46CAS | 12443056PubMed |
[3] P. H. Dussault, C. T. Eary, K. R. Woller, J. Org. Chem. 1999, 64, 1789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1art70%3D&md5=d1f4387178af64b59eeb3595c233232dCAS | 11674266PubMed |
[4] M. G. Charest, D. R. Siegel, A. G. Myers, J. Am. Chem. Soc. 2005, 127, 8292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVWjtrg%3D&md5=0d68d86dd3bcc906b1a19f2d3d768412CAS | 15941256PubMed |
[5] C. J. Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. Lenihan, H. Jiang, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D. Diola, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, Nature 2013, 496, 528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslWnt70%3D&md5=4fb27db0cf79387bf126dbd90d2e97e6CAS | 23575629PubMed |
[6] E. L. Clennan, Tetrahedron 1991, 47, 1343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVGgs78%3D&md5=6418d3fa4e0c3530862e5ec92be09545CAS |
[7] W. Fudickar, T. Linker, J. Am. Chem. Soc. 2005, 127, 9386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSmtLY%3D&md5=acd90056679f37a6f08817c049943d7bCAS | 15984863PubMed |
[8] W. Fudickar, T. Linker, Chem. – Eur. J. 2011, 17, 13661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWlsL%2FN&md5=dbc0f7a69b3bbd74093b7ef1afcda172CAS | 22052813PubMed |
[9] W. Fudickar, T. Linker, Langmuir 2009, 25, 9797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVyrurw%3D&md5=b22fe315a47db582e18dea0b04859f4aCAS | 19441843PubMed |
[10] M. Prein, W. Adam, Angew. Chem. Int. Ed. 1996, 35, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVOlurc%3D&md5=6a07563b3909e3c1bb730045329f0719CAS |
[11] E. L. Clennan, Tetrahedron 2000, 56, 9151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVemsLw%3D&md5=6bca9e72a9e5a3d2ca9867cdf3f5a4bbCAS |
[12] E. L. Clennan, A. Pace, Tetrahedron 2005, 61, 6665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlent7Y%3D&md5=f0615b79a00ff3397830093f0239a3d4CAS |
[13] L. M. Stephenson, M. J. Grdina, M. Orfanopoulos, Acc. Chem. Res. 1980, 13, 419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtF2qur0%3D&md5=b0c7d5c8a9b7e0115e391f1bac29a046CAS |
[14] A. A. Frimer, Chem. Rev. 1979, 79, 359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtFSns78%3D&md5=bb29389a4128e5fa06af4248a4be4b2fCAS |
[15] R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. 1969, 8, 781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXjsFymtA%3D%3D&md5=5e4b8a4a07c84894de05f8df31fc6076CAS |
[16] L. B. Harding, W. A. Goddard, J. Am. Chem. Soc. 1980, 102, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvVSmtbw%3D&md5=b31e646e521472926d3e73ec3004942cCAS |
[17] Y. Yoshioka, S. Yamada, T. Kawakami, M. Nishino, K. Yamaguchi, I. Saito, Bull. Chem. Soc. Jpn. 1996, 69, 2683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVSit78%3D&md5=04d8907ad80b95bc2226f8ca7fb01505CAS |
[18] G. Tonachini, H. B. Schlegel, F. Bernardi, M. A. Robb, J. Am. Chem. Soc. 1990, 112, 483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjsFSgsA%3D%3D&md5=6dd7fea25b88532c971f7e9af23e40c9CAS |
[19] K. E. O`Shea, C. S. Foote, J. Am. Chem. Soc. 1988, 110, 7167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFSgtbs%3D&md5=6cea9d9d3143f132a2f101c8561a4b95CAS |
[20] C. S. Foote, F. W. Denny, J. Am. Chem. Soc. 1971, 93, 5162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsVSjsrs%3D&md5=a936e4a6ad8056a2ced5c0bd89e472e0CAS |
[21] C. S. Foote, F. W. Denny, J. Am. Chem. Soc. 1971, 93, 5168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsVSjsrg%3D&md5=5afdf1f73afeaff77e769c86091c423fCAS |
[22] M. Orfanopoulos, M. B. Grdina, L. M. Stephenson, J. Am. Chem. Soc. 1979, 101, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVaqu78%3D&md5=689b69e1439ba60ce1a272e1c11b5f14CAS |
[23] K.-H. Schulte-Elte, B. L. Muller, V. Rautenstrauch, Helv. Chim. Acta 1978, 61, 2777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhsFWntro%3D&md5=b784619ef5050a0aaf435cd2821f4166CAS |
[24] K. N. Houk, J. C. Williams, P. A. Mitchell, K. Yamaguchi, J. Am. Chem. Soc. 1981, 103, 949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtVaks7g%3D&md5=8efef8951b9eca5a48380f5ef6618715CAS |
[25] K. Gollnick, Adv. Chem. Ser. 1968, 77, 78.
| Crossref | GoogleScholarGoogle Scholar |
[26] K. Yamaguchi, S. Yabushita, T. Fueno, K. N. Houk, J. Am. Chem. Soc. 1981, 103, 5043.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkvVKqtr8%3D&md5=aa12ddca0dd3332797d1b5332d2257b2CAS |
[27] K. R. Kopecky, J. H. van de Sande, Can. J. Chem. 1972, 50, 4034.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFShsbw%3D&md5=83a2cbf6100c1d7c783cebb16e72a360CAS |
[28] B. Grdina, M. Orfanopoulos, L. M. Stephenson, J. Am. Chem. Soc. 1979, 101, 3111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFKhsrw%3D&md5=b49e6d1a70a2882ce860b0ce65c5db1cCAS |
[29] A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standen, J. Am. Chem. Soc. 1988, 110, 8053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlSiu7k%3D&md5=11ffa274ec91390fd69ea19a61c2dd1aCAS |
[30] M. N. Alberti, G. Vassilikogiannakis, M. Orfanopoulos, Org. Lett. 2008, 10, 3997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWmurbF&md5=a383b56178f613fd4525b8008ca9407fCAS | 18707107PubMed |
[31] W. Adam, B. Nestler, J. Am. Chem. Soc. 1993, 115, 5041.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFKlsLo%3D&md5=5a9d3e0e787b091900a372811d160147CAS |
[32] T. Linker, L. Fröhlich, Angew. Chem. Int. Ed. 1994, 33, 1971.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. Linker, L. Fröhlich, J. Am. Chem. Soc. 1995, 117, 2694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFegtLY%3D&md5=a7254086b0d12d072c17cf6aeaabf095CAS |
[34] W. Fudickar, K. M. Vorndran, T. Linker, Tetrahedron 2006, 62, 10639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCrsbzL&md5=f4029c4b8e39114a84a2bc573a837c34CAS |
[35] W. Adam, K. Peters, E.-M. Peters, S. B. Schambony, J. Am. Chem. Soc. 2000, 122, 7610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVSitbk%3D&md5=92f74198ea5b0cd18c719a262800ad31CAS |
[36] T. H. W. Poon, K. Pringle, C. S. Foote, J. Am. Chem. Soc. 1995, 117, 7611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXms1Gnu7k%3D&md5=d76b90c588c6103c7fcd94ee0d93b215CAS |
[37] A. G. Leach, K. N. Houk, C. S. Foote, J. Org. Chem. 2008, 73, 8511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SjtrnF&md5=cabdef80635a895aa0d349380b645acdCAS | 18834182PubMed |
[38] D. A. Singleton, C. Hang, M. J. Szymanski, M. P. Meyer, A. G. Leach, K. T. Kuwata, J. S. Chen, A. Greer, C. S. Foote, J. Am. Chem. Soc. 2003, 125, 1319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFWrtA%3D%3D&md5=daee5f73e6746f7a842558906d7c0516CAS | 12553834PubMed |
[39] B. K. Carpenter, Chem. Rev. 2013, 113, 7265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWgsr0%3D&md5=2b490455d7c989ea8b59fa2fd580fb39CAS | 23452442PubMed |
[40] E. L. Clennan, C. S. Foote, in Organic Peroxides (Ed. W. Ando) 1992, pp. 255–318 (John Wiley & Sons Ltd.: New York, NY).
[41] J.-M. Aubry, C. Pierlot, J. Rigaudy, R. Schmidt, Acc. Chem. Res. 2003, 36, 668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltF2rs7s%3D&md5=89cad1cab6f87ad68fe25db5f3c183f3CAS | 12974650PubMed |
[42] H. H. Wasserman, J. R. Scheffer, J. Am. Chem. Soc. 1967, 89, 3073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1CjsrY%3D&md5=0944b438a01e92366ed65a21497c9d68CAS | 6043823PubMed |
[43] A. Dewilde, C. Pellieux, S. Hajjam, P. Wattre, C. Pierlot, D. Hober, J.-M. Aubry, J. Photochem. Photobiol. B 1996, 36, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlOntL4%3D&md5=bf3d934f917d558272427bc414df6d13CAS | 8988609PubMed |
[44] N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Angew. Chem. Int. Ed. 1999, 38, 2899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslKht70%3D&md5=232d853be13b464a63e86116ff46c0d4CAS |
[45] A. M. CaMinade, F. El Khatib, M. Koenig, J.-M. Aubry, Can. J. Chem. 1985, 63, 3203.
| 1:CAS:528:DyaL2MXmtFGns7Y%3D&md5=2e7e9adecf25354c91f2bf736fadd3deCAS |
[46] J.-M. Aubry, J. Rigaudy, C. Ferradini, J. Pucheault, J. Am. Chem. Soc. 1981, 103, 4965.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkslGrt7s%3D&md5=9e90528774b4e5d96b518000d4660130CAS |
[47] A. G. Leach, K. N. Houk, Chem. Commun. 2002, 1243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFGgsb8%3D&md5=eb1ca4858f924dd861dc26b83d202671CAS |
[48] J.-M. Aubry, B. Mandard-Cazin, M. Rougee, R. V. Bensasson, J. Am. Chem. Soc. 1995, 117, 9159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1Cjt70%3D&md5=d0ed98b7af0509b5f990ffeb4796a283CAS |
[49] W. Adam, M. Prein, Acc. Chem. Res. 1996, 29, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFeks7s%3D&md5=3f843b11452bd49195d668f101cf1d5dCAS |
[50] M. Bobrowski, A. Liwo, S. Oldzieg, D. Jeziorek, T. Ossowski, J. Am. Chem. Soc. 2000, 122, 8112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslWksrg%3D&md5=1d65b2ac2e0164eb98d55c6e07697c53CAS |
[51] W. Adam, M. Prein, J. Am. Chem. Soc. 1993, 115, 3766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFCrtr8%3D&md5=2d83e223492a39b4b248765e4070366aCAS |
[52] S.-H. Chien, M.-F. Cheng, K.-C. Lau, W.-K. Li, J. Phys. Chem. A 2005, 109, 7509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFSrsLs%3D&md5=2ba2ea522fa2af71f71fc19d0f2cfd70CAS | 16834120PubMed |
[53] A. R. Reddy, M. Bendikov, Chem. Commun. 2006, 1179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGgt70%3D&md5=1f4200884271d2418bdc8550127bdfdaCAS |
[54] D. Zehm, W. Fudickar, T. Linker, Angew. Chem. Int. Ed. 2007, 46, 7689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sis7zO&md5=a071b18e66c7ad97f618c8736c6b06a8CAS |
[55] W. Fudickar, T. Linker, Chem. Commun. 2008, 1771.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVCitbg%3D&md5=415f1d052440115e05f726d8a8bf2fa8CAS |
[56] N. J. Turro, M. F. Chow, J. Rigaudy, J. Am. Chem. Soc. 1981, 103, 7218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVejtLw%3D&md5=9b767c199c47c0084383c6c95e856436CAS |
[57] H. H. Wasserman, K. B. Wiberg, D. L. Larson, J. Parr, J. Org. Chem. 2005, 70, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrs7zN&md5=eb12e2b18fa5635e82b7683baf6c249fCAS | 15624911PubMed |
[58] M. L. Coote, C. Y. Lin, H. Zipse, in Carbon-Centered Free Radicals and Radical Cations (Ed. M. D. E. Forbes) 2010, Vol. 3, Ch. 5, pp. 83–102 (John Wiley and Sons: Hoboken, NJ).
[59] W. Fudickar, T. Linker, J. Am. Chem. Soc. 2012, 134, 15071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOru73N&md5=f84954edc09b69b991cdaaffbedfa9c2CAS | 22881365PubMed |