Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Intermediates in the Formation and Thermolysis of Peroxides from Oxidations with Singlet Oxygen

Werner Fudickar A and Torsten Linker A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany.

B Corresponding author. Email: linker@uni-potsdam.de

Australian Journal of Chemistry 67(3) 320-327 https://doi.org/10.1071/CH13423
Submitted: 15 August 2013  Accepted: 3 October 2013   Published: 30 October 2013

Abstract

Herein we describe the recent mechanistic understandings of the singlet oxygen ene reaction to give hydroperoxides and the [4+2] cycloaddition affording endoperoxides. Both experimental findings and theoretical work conclude in the formation of intermediates structurally similar to perepoxides during the ene reaction. Such intermediates mainly control the regio- and stereoselectivities of this reaction class. For the [4+2] cycloaddition, both a synchronous concerted reaction (benzene, naphthalenes) and a stepwise reaction with a non-symmetric zwitterionic intermediate (larger acenes) have been found. The thermolysis of endoperoxides derived from acenes proceeds stepwise for anthracenes, but in a concerted manner for less stable adducts such as naphthalene.


References

[1]  Singlet Oxygen (Ed. A. A. Frimer) 1985 (CRC Press: Boca Raton, FL).

[2]  A. G. Griesbeck, T. T. El-Idressy, M. Fliege, R. Brun, Org. Lett. 2002, 4, 4193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFKktbs%3D&md5=549ed1b29e043b8ab15cd76a0e744b46CAS | 12443056PubMed |

[3]  P. H. Dussault, C. T. Eary, K. R. Woller, J. Org. Chem. 1999, 64, 1789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1art70%3D&md5=d1f4387178af64b59eeb3595c233232dCAS | 11674266PubMed |

[4]  M. G. Charest, D. R. Siegel, A. G. Myers, J. Am. Chem. Soc. 2005, 127, 8292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVWjtrg%3D&md5=0d68d86dd3bcc906b1a19f2d3d768412CAS | 15941256PubMed |

[5]  C. J. Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. Lenihan, H. Jiang, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D. Diola, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, Nature 2013, 496, 528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslWnt70%3D&md5=4fb27db0cf79387bf126dbd90d2e97e6CAS | 23575629PubMed |

[6]  E. L. Clennan, Tetrahedron 1991, 47, 1343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVGgs78%3D&md5=6418d3fa4e0c3530862e5ec92be09545CAS |

[7]  W. Fudickar, T. Linker, J. Am. Chem. Soc. 2005, 127, 9386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSmtLY%3D&md5=acd90056679f37a6f08817c049943d7bCAS | 15984863PubMed |

[8]  W. Fudickar, T. Linker, Chem. – Eur. J. 2011, 17, 13661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWlsL%2FN&md5=dbc0f7a69b3bbd74093b7ef1afcda172CAS | 22052813PubMed |

[9]  W. Fudickar, T. Linker, Langmuir 2009, 25, 9797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVyrurw%3D&md5=b22fe315a47db582e18dea0b04859f4aCAS | 19441843PubMed |

[10]  M. Prein, W. Adam, Angew. Chem. Int. Ed. 1996, 35, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVOlurc%3D&md5=6a07563b3909e3c1bb730045329f0719CAS |

[11]  E. L. Clennan, Tetrahedron 2000, 56, 9151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVemsLw%3D&md5=6bca9e72a9e5a3d2ca9867cdf3f5a4bbCAS |

[12]  E. L. Clennan, A. Pace, Tetrahedron 2005, 61, 6665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlent7Y%3D&md5=f0615b79a00ff3397830093f0239a3d4CAS |

[13]  L. M. Stephenson, M. J. Grdina, M. Orfanopoulos, Acc. Chem. Res. 1980, 13, 419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtF2qur0%3D&md5=b0c7d5c8a9b7e0115e391f1bac29a046CAS |

[14]  A. A. Frimer, Chem. Rev. 1979, 79, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtFSns78%3D&md5=bb29389a4128e5fa06af4248a4be4b2fCAS |

[15]  R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. 1969, 8, 781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXjsFymtA%3D%3D&md5=5e4b8a4a07c84894de05f8df31fc6076CAS |

[16]  L. B. Harding, W. A. Goddard, J. Am. Chem. Soc. 1980, 102, 439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvVSmtbw%3D&md5=b31e646e521472926d3e73ec3004942cCAS |

[17]  Y. Yoshioka, S. Yamada, T. Kawakami, M. Nishino, K. Yamaguchi, I. Saito, Bull. Chem. Soc. Jpn. 1996, 69, 2683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVSit78%3D&md5=04d8907ad80b95bc2226f8ca7fb01505CAS |

[18]  G. Tonachini, H. B. Schlegel, F. Bernardi, M. A. Robb, J. Am. Chem. Soc. 1990, 112, 483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjsFSgsA%3D%3D&md5=6dd7fea25b88532c971f7e9af23e40c9CAS |

[19]  K. E. O`Shea, C. S. Foote, J. Am. Chem. Soc. 1988, 110, 7167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFSgtbs%3D&md5=6cea9d9d3143f132a2f101c8561a4b95CAS |

[20]  C. S. Foote, F. W. Denny, J. Am. Chem. Soc. 1971, 93, 5162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsVSjsrs%3D&md5=a936e4a6ad8056a2ced5c0bd89e472e0CAS |

[21]  C. S. Foote, F. W. Denny, J. Am. Chem. Soc. 1971, 93, 5168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsVSjsrg%3D&md5=5afdf1f73afeaff77e769c86091c423fCAS |

[22]  M. Orfanopoulos, M. B. Grdina, L. M. Stephenson, J. Am. Chem. Soc. 1979, 101, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVaqu78%3D&md5=689b69e1439ba60ce1a272e1c11b5f14CAS |

[23]  K.-H. Schulte-Elte, B. L. Muller, V. Rautenstrauch, Helv. Chim. Acta 1978, 61, 2777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhsFWntro%3D&md5=b784619ef5050a0aaf435cd2821f4166CAS |

[24]  K. N. Houk, J. C. Williams, P. A. Mitchell, K. Yamaguchi, J. Am. Chem. Soc. 1981, 103, 949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtVaks7g%3D&md5=8efef8951b9eca5a48380f5ef6618715CAS |

[25]  K. Gollnick, Adv. Chem. Ser. 1968, 77, 78.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  K. Yamaguchi, S. Yabushita, T. Fueno, K. N. Houk, J. Am. Chem. Soc. 1981, 103, 5043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkvVKqtr8%3D&md5=aa12ddca0dd3332797d1b5332d2257b2CAS |

[27]  K. R. Kopecky, J. H. van de Sande, Can. J. Chem. 1972, 50, 4034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFShsbw%3D&md5=83a2cbf6100c1d7c783cebb16e72a360CAS |

[28]  B. Grdina, M. Orfanopoulos, L. M. Stephenson, J. Am. Chem. Soc. 1979, 101, 3111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFKhsrw%3D&md5=b49e6d1a70a2882ce860b0ce65c5db1cCAS |

[29]  A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standen, J. Am. Chem. Soc. 1988, 110, 8053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlSiu7k%3D&md5=11ffa274ec91390fd69ea19a61c2dd1aCAS |

[30]  M. N. Alberti, G. Vassilikogiannakis, M. Orfanopoulos, Org. Lett. 2008, 10, 3997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWmurbF&md5=a383b56178f613fd4525b8008ca9407fCAS | 18707107PubMed |

[31]  W. Adam, B. Nestler, J. Am. Chem. Soc. 1993, 115, 5041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFKlsLo%3D&md5=5a9d3e0e787b091900a372811d160147CAS |

[32]  T. Linker, L. Fröhlich, Angew. Chem. Int. Ed. 1994, 33, 1971.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  T. Linker, L. Fröhlich, J. Am. Chem. Soc. 1995, 117, 2694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFegtLY%3D&md5=a7254086b0d12d072c17cf6aeaabf095CAS |

[34]  W. Fudickar, K. M. Vorndran, T. Linker, Tetrahedron 2006, 62, 10639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCrsbzL&md5=f4029c4b8e39114a84a2bc573a837c34CAS |

[35]  W. Adam, K. Peters, E.-M. Peters, S. B. Schambony, J. Am. Chem. Soc. 2000, 122, 7610.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVSitbk%3D&md5=92f74198ea5b0cd18c719a262800ad31CAS |

[36]  T. H. W. Poon, K. Pringle, C. S. Foote, J. Am. Chem. Soc. 1995, 117, 7611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXms1Gnu7k%3D&md5=d76b90c588c6103c7fcd94ee0d93b215CAS |

[37]  A. G. Leach, K. N. Houk, C. S. Foote, J. Org. Chem. 2008, 73, 8511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SjtrnF&md5=cabdef80635a895aa0d349380b645acdCAS | 18834182PubMed |

[38]  D. A. Singleton, C. Hang, M. J. Szymanski, M. P. Meyer, A. G. Leach, K. T. Kuwata, J. S. Chen, A. Greer, C. S. Foote, J. Am. Chem. Soc. 2003, 125, 1319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFWrtA%3D%3D&md5=daee5f73e6746f7a842558906d7c0516CAS | 12553834PubMed |

[39]  B. K. Carpenter, Chem. Rev. 2013, 113, 7265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWgsr0%3D&md5=2b490455d7c989ea8b59fa2fd580fb39CAS | 23452442PubMed |

[40]  E. L. Clennan, C. S. Foote, in Organic Peroxides (Ed. W. Ando) 1992, pp. 255–318 (John Wiley & Sons Ltd.: New York, NY).

[41]  J.-M. Aubry, C. Pierlot, J. Rigaudy, R. Schmidt, Acc. Chem. Res. 2003, 36, 668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltF2rs7s%3D&md5=89cad1cab6f87ad68fe25db5f3c183f3CAS | 12974650PubMed |

[42]  H. H. Wasserman, J. R. Scheffer, J. Am. Chem. Soc. 1967, 89, 3073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1CjsrY%3D&md5=0944b438a01e92366ed65a21497c9d68CAS | 6043823PubMed |

[43]  A. Dewilde, C. Pellieux, S. Hajjam, P. Wattre, C. Pierlot, D. Hober, J.-M. Aubry, J. Photochem. Photobiol. B 1996, 36, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlOntL4%3D&md5=bf3d934f917d558272427bc414df6d13CAS | 8988609PubMed |

[44]  N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Angew. Chem. Int. Ed. 1999, 38, 2899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslKht70%3D&md5=232d853be13b464a63e86116ff46c0d4CAS |

[45]  A. M. CaMinade, F. El Khatib, M. Koenig, J.-M. Aubry, Can. J. Chem. 1985, 63, 3203.
         | 1:CAS:528:DyaL2MXmtFGns7Y%3D&md5=2e7e9adecf25354c91f2bf736fadd3deCAS |

[46]  J.-M. Aubry, J. Rigaudy, C. Ferradini, J. Pucheault, J. Am. Chem. Soc. 1981, 103, 4965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkslGrt7s%3D&md5=9e90528774b4e5d96b518000d4660130CAS |

[47]  A. G. Leach, K. N. Houk, Chem. Commun. 2002, 1243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFGgsb8%3D&md5=eb1ca4858f924dd861dc26b83d202671CAS |

[48]  J.-M. Aubry, B. Mandard-Cazin, M. Rougee, R. V. Bensasson, J. Am. Chem. Soc. 1995, 117, 9159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1Cjt70%3D&md5=d0ed98b7af0509b5f990ffeb4796a283CAS |

[49]  W. Adam, M. Prein, Acc. Chem. Res. 1996, 29, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFeks7s%3D&md5=3f843b11452bd49195d668f101cf1d5dCAS |

[50]  M. Bobrowski, A. Liwo, S. Oldzieg, D. Jeziorek, T. Ossowski, J. Am. Chem. Soc. 2000, 122, 8112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslWksrg%3D&md5=1d65b2ac2e0164eb98d55c6e07697c53CAS |

[51]  W. Adam, M. Prein, J. Am. Chem. Soc. 1993, 115, 3766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFCrtr8%3D&md5=2d83e223492a39b4b248765e4070366aCAS |

[52]  S.-H. Chien, M.-F. Cheng, K.-C. Lau, W.-K. Li, J. Phys. Chem. A 2005, 109, 7509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFSrsLs%3D&md5=2ba2ea522fa2af71f71fc19d0f2cfd70CAS | 16834120PubMed |

[53]  A. R. Reddy, M. Bendikov, Chem. Commun. 2006, 1179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGgt70%3D&md5=1f4200884271d2418bdc8550127bdfdaCAS |

[54]  D. Zehm, W. Fudickar, T. Linker, Angew. Chem. Int. Ed. 2007, 46, 7689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sis7zO&md5=a071b18e66c7ad97f618c8736c6b06a8CAS |

[55]  W. Fudickar, T. Linker, Chem. Commun. 2008, 1771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVCitbg%3D&md5=415f1d052440115e05f726d8a8bf2fa8CAS |

[56]  N. J. Turro, M. F. Chow, J. Rigaudy, J. Am. Chem. Soc. 1981, 103, 7218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVejtLw%3D&md5=9b767c199c47c0084383c6c95e856436CAS |

[57]  H. H. Wasserman, K. B. Wiberg, D. L. Larson, J. Parr, J. Org. Chem. 2005, 70, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrs7zN&md5=eb12e2b18fa5635e82b7683baf6c249fCAS | 15624911PubMed |

[58]  M. L. Coote, C. Y. Lin, H. Zipse, in Carbon-Centered Free Radicals and Radical Cations (Ed. M. D. E. Forbes) 2010, Vol. 3, Ch. 5, pp. 83–102 (John Wiley and Sons: Hoboken, NJ).

[59]  W. Fudickar, T. Linker, J. Am. Chem. Soc. 2012, 134, 15071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOru73N&md5=f84954edc09b69b991cdaaffbedfa9c2CAS | 22881365PubMed |