Methylmercury in arctic Alaskan mosquitoes: implications for impact of atmospheric mercury depletion events
Chad R. Hammerschmidt A C and William F. Fitzgerald BA Department of Earth and Environmental Sciences, Wright State University, Dayton, OH 45435, USA.
B Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
C Corresponding author. Email: chad.hammerschmidt@wright.edu
Environmental Chemistry 5(2) 127-130 https://doi.org/10.1071/EN08003
Submitted: 4 January 2008 Accepted: 22 February 2008 Published: 17 April 2008
Environmental context. Recent research suggests that gross mercury deposition in the Arctic is increased significantly as a result of springtime Atmospheric Mercury Depletion Events (AMDE). A primary environmental and human health concern is whether mercury deposited with these events leads to enhanced production and uptake of the toxic methylmercury species in polar ecosystems. Here, we present an initial assessment of potential impact from AMDE utilising mosquitoes as bioindicators of methylmercury accumulation in freshwater and terrestrial food webs within 200 km of the Arctic Ocean.
Abstract. Atmospheric Mercury Depletion Events (AMDE) – phenomena in which elemental Hg is oxidised and stripped from the atmosphere over an 8–12-week period following polar sunrise – appear to increase Hg deposition to environs near the Arctic Ocean with a lesser impact inland. A key concern is whether such events lead to enhanced production and uptake of the toxic methylmercury (MeHg) species into arctic food webs. Here, we used mosquitoes, which are sensitive and site-specific bioindicators of Hg loadings, to assess the impact of AMDE on ecosystem MeHg contamination along a 200-km transect between the Arctic Ocean coast and foothills of the Brooks Range, where gross atmospheric Hg deposition appears to be ~20-fold less than that near the coast. This preliminary survey revealed little variation and no gradient in mosquito MeHg levels, which suggests comparable ecosystem impact. This may also point to significant cycling and reemission (e.g. via photoreduction) of Hg deposited during AMDE from the snow and ice pack to the atmosphere.
Additional keywords: atmospheric deposition, bioavailability, biological monitoring.
Acknowledgments
Allan Hutchins assisted with mosquito collections in July 2007. We are grateful to Alison Green and three anonymous reviewers for helpful comments on an earlier version of the manuscript. The present study was supported by the USA National Science Foundation – Office of Polar Programs (0425562).
[1]
W. H. Schroeder ,
K. G. Anlauf ,
L. A. Barrie ,
J. Y. Lu ,
A. Steffen ,
D. R. Schneeberger ,
T. Berg ,
Arctic springtime depletion of mercury.
Nature 1998
, 394, 331.
| Crossref | GoogleScholarGoogle Scholar |
[2]
J. L. Kirk ,
V. L. St. Louis ,
M. J. Sharp ,
Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada.
Environ. Sci. Technol. 2006
, 40, 7590.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[3]
S. E. Lindberg ,
S. Brooks ,
C.-J. Lin ,
K. J. Scott ,
M. S. Landis ,
R. K. Stevens ,
M. Goodsite ,
A. Richter ,
Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise.
Environ. Sci. Technol. 2002
, 36, 1245.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[4]
S. B. Brooks ,
A. Saiz-Lopez ,
H. Skov ,
S. E. Lindberg ,
J. M. C. Plane ,
M. E. Goodsite ,
The mass balance of mercury in the springtime Arctic environment.
Geophys. Res. Lett. 2006
, 33, L13812.
| Crossref | GoogleScholarGoogle Scholar |
[5]
H. Skov ,
J. H. Christensen ,
M. E. Goodsite ,
N. Z. Heidam ,
B. Jensen ,
P. Wåhlin ,
G. Geernaert ,
Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic.
Environ. Sci. Technol. 2004
, 38, 2373.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[6]
T. Berg ,
S. Sekkesæter ,
E. Steinnes ,
A.-K. Valdal ,
G. Wibetoe ,
Springtime depletion of mercury in the European Arctic as observed at Svalbard.
Sci. Total Environ. 2003
, 304, 43.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[7]
R. Ebinghaus ,
H. H. Kock ,
C. Temme ,
J. W. Einax ,
A. G. Lowe ,
A. Richter ,
J. P. Burrows ,
W. H. Schroeder ,
Antarctic springtime depletion of atmospheric mercury.
Environ. Sci. Technol. 2002
, 36, 1238.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[8]
P. A. Ariya ,
A. Khalizov ,
A. Gidas ,
Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications.
J. Phys. Chem. A 2002
, 106, 7310.
| Crossref | GoogleScholarGoogle Scholar |
[9]
J. G. Calvert ,
S. E. Lindberg ,
A modeling study of the mechanism of the halogen–ozone–mercury homogeneous reactions in the troposphere during the polar spring.
Atmos. Environ. 2003
, 37, 4467.
| Crossref | GoogleScholarGoogle Scholar |
[10]
T. A. Douglas ,
M. Sturm ,
Arctic haze, mercury and the chemical composition of snow across north-western Alaska.
Atmos. Environ. 2004
, 38, 805.
| Crossref | GoogleScholarGoogle Scholar |
[11]
P. Constant ,
L. Poissant ,
R. Villemur ,
E. Yumvihoze ,
D. Lean ,
Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra of the shore of Hudson Bay (Québec, Canada).
J. Geophys. Res. 2007
, 112, D08309.
| Crossref | GoogleScholarGoogle Scholar |
[12]
A. J. Poulain ,
E. Garcia ,
M. Amyot ,
P. G. C. Campbell ,
P. A. Ariya ,
Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow.
Geochim. Cosmochim. Acta 2007
, 71, 3419.
| Crossref | GoogleScholarGoogle Scholar |
[13]
W. F. Fitzgerald ,
D. R. Engstrom ,
C. H. Lamborg ,
C.-M. Tseng ,
P. H. Balcom ,
C. R. Hammerschmidt ,
Modern and historic atmospheric mercury fluxes in northern Alaska: global sources and arctic depletion.
Environ. Sci. Technol. 2005
, 39, 557.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
C. R. Hammerschmidt ,
M. B. Sandheinrich ,
J. G. Wiener ,
R. G. Rada ,
Effects of dietary methylmercury on the reproduction of fathead minnows.
Environ. Sci. Technol. 2002
, 36, 877.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[15]
[16]
J. T. Salonen ,
K. Seppanen ,
K. Nyyssonen ,
H. Korpela ,
J. Kauhanen ,
M. Kantola ,
J. Tuomilehto ,
H. Esterbauer ,
F. Tatzber ,
R. Salonen ,
Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men.
Circulation 1995
, 91, 645.
| PubMed |
[17]
P. Grandjean ,
P. Weihe ,
R. F. White ,
F. Debes ,
S. Araki ,
K. Yokoyama ,
K. Murata ,
N. Sorenson ,
R. Dahl ,
P. Jorgensen ,
Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury.
Neurotoxicol. Teratol. 1997
, 19, 417.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
N. Sorensen ,
K. Murata ,
E. Budtz-Jorgensen ,
P. Weihe ,
P. Grandjean ,
Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age.
Epidemiology 1999
, 10, 370.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
R. C. Harris ,
J. W. M. Rudd ,
M. Amyot ,
C. L. Babiarz ,
K. G. Beaty ,
P. J. Blanchfield ,
R. A. Bodaly ,
B. A. Branfireun ,
C. C. Gilmour ,
J. A. Graydon ,
A. Heyes ,
H. Hintelmann ,
J. P. Hurley ,
C. A. Kelly ,
D. P. Krabbenhoft ,
S. E. Lindberg ,
R. P. Mason ,
M. J. Paterson ,
C. L. Podemski ,
A. Robinson ,
K. A. Sandilands ,
G. R. Southworth ,
V. L. St. Louis ,
M. T. Tate ,
Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition.
Proc. Natl. Acad. Sci. USA 2007
, 104, 16586.
| Crossref | GoogleScholarGoogle Scholar |
[20]
D. M. Orihel ,
M. J. Paterson ,
C. C. Gilmour ,
R. A. Bodaly ,
P. J. Blanchfield ,
H. Hintelmann ,
R. C. Harris ,
J. W. M. Rudd ,
Effect of loading rate on the fate of mercury in littoral mesocosms.
Environ. Sci. Technol. 2006
, 40, 5992.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[21]
D. M. Orihel ,
M. J. Paterson ,
P. J. Blanchfield ,
R. A. Bodaly ,
H. Hintelmann ,
Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota.
Environ. Sci. Technol. 2007
, 41, 4952.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
C. R. Hammerschmidt ,
W. F. Fitzgerald ,
C. H. Lamborg ,
P. H. Balcom ,
C.-M. Tseng ,
Biogeochemical cycling of methylmercury in lakes and tundra watersheds of arctic Alaska.
Environ. Sci. Technol. 2006
, 40, 1204.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[23]
C. R. Hammerschmidt ,
W. F. Fitzgerald ,
Methylmercury in mosquitoes related to atmospheric deposition and contamination.
Environ. Sci. Technol. 2005
, 39, 3034.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[24]
C. R. Hammerschmidt ,
W. F. Fitzgerald ,
Methylmercury in freshwater fish linked to atmospheric mercury deposition.
Environ. Sci. Technol. 2006
, 40, 7764.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
[26]
W. D. Sudia ,
R. W. Chamberlain ,
Battery-operated light trap, an improved model.
Mosq. News 1962
, 22, 126.
[27]
N. S. Bloom ,
Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapor atomic fluorescence detection.
Can. J. Fish. Aquat. Sci. 1989
, 46, 1131.
| Crossref | GoogleScholarGoogle Scholar |
[28]
C.-M. Tseng ,
C. R. Hammerschmidt ,
W. F. Fitzgerald ,
Determination of methylmercury in environmental matrixes by on-line flow injection and atomic fluorescence spectrometry.
Anal. Chem. 2004
, 76, 7131.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
J. D. Lalonde ,
A. J. Poulain ,
M. Amyot ,
The role of mercury redox reactions in snow on snow-to-air mercury transfer.
Environ. Sci. Technol. 2002
, 36, 174.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
J. D. Lalonde ,
M. Amyot ,
M. Doyon ,
J. Auclair ,
Photo-induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada).
J. Geophys. Res. 2003
, 108, 4200.
| Crossref | GoogleScholarGoogle Scholar |