Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Postfrontal nanoparticles at Cape Grim: impact on cloud nuclei concentrations

John L. Gras
+ Author Affiliations
- Author Affiliations

Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, 107–121 Station St., Aspendale, Vic. 3195, Australia. Email: john.gras@csiro.au

Environmental Chemistry 6(6) 515-523 https://doi.org/10.1071/EN09076
Submitted: 22 June 2009  Accepted: 28 October 2009   Published: 18 December 2009

Environmental context. Accurate prediction of climate change requires good knowledge of all the contributing processes; those processes controlling clouds and cloud properties are of particular importance. In this study the growth of bursts of nanometre-sized particles observed following cold fronts over the Southern Ocean was modelled to assess their importance as a source of cloud droplet nuclei. This showed that these post-frontal events were responsible for ~8% of the cloud nucleus population in winter but much less in summer.

Abstract. Aerosol removal and growth rates were determined for the Cape Grim marine boundary layer (MBL) using local observations. Background particle growth rates, estimated using replacement of condensable sulfur species lost to particle removal are 0.04 nm h–1 (winter) and 0.17 nm h–1 (summer) and for post-frontal nucleation-events growth rates determined using evolution of the concentration ratio of particles with diameter >3 nm and 11 nm are ~0.3–0.4 nm h–1, consistent with reported high-latitude events. A box model using region-specific loss and growth rates predicts free-troposphere/MBL N3 ratios of 1.3–2.1 and 2.4–2.5 for background and event growth rates, compared with observations in the range of 0.7–1.5. Post-frontal nucleation events were found to contribute from <1 to ~8% of the CCN population depending on season and growth rate. However, these events help maintain the MBL Aitken population, contributing up to ~30%.

Additional keywords: CCN, marine aerosol, nucleation.


References


[1]   F. Raes , R. van Dingenen , E. Vignati , J. Wilson , J.-P. Putard , J. H. Seinfeld , P. Adams , Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 2000 , 34,  4215.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   C. Andronache , Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys. 2003 , 3,  131.
        |  CAS |  open url image1

[3]   C. Andronache , Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer. J. Geophys. Res. 2004 , 109,  D16S07.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   D. M. Chate , Study of scavenging of submicron-sized aerosol particles by thunderstorm rain events. Atmos. Environ. 2005 , 39,  6608.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   J. S. Henzing , S. J. L. Olivié , P. F. J. van Velthoven , A parameterization of size resolved below cloud scavenging of aerosols by rain. Atmos. Chem. Phys. 2006 , 6,  3363.
        |  CAS |  open url image1

[6]   M. Kulmala , H. Vehkamäki , T. Petäjä , M. Dal Maso , A. Lauri , V.-M. Kerminen , W. Birmili , P. H. McMurry , Formation and growth rates of ultrafine particles: a review of observations. J. Aerosol Sci. 2004 , 35,  143.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   S. N. Pandis , L. M. Russell , J. H. Seinfeld , The relationship between DMS flux and CCN concentration in remote marine regions. J. Geophys. Res. 1994 , 99,  16945.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   X. Lin , W. L. Chameides , C. S. Kiang , A. W. Stelson , H. Berresheim , A model study of the formation of cloud condensation nuclei in remote marine areas. J. Geophys. Res. 1992 , 97,  18161.
         open url image1

[9]   M. Hamrud , H. Rodhe , Lagrangian time scales connected with clouds and precipitation. J. Geophys. Res. 1986 , 91,  14377.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   Hummelshøj P., Jensen N. O., Larsen S. E., Particle dry deposition to a ‘sea surface’, in Precipitation Scavenging and Atmospheric Surface Exchange (Eds S. Schwartz, W. G. N. Slinn) 1992, pp. 829–840 (Taylor and Francis: Philadelphia, PA).

[11]   Warren S. G., Hahn C. J., London C. J., Chervin R. M., Jenne R. J., Global Distribution of total cloud cover and cloud type amounts over the ocean. DOE/ER-0406, NCAR/TN-317+STR 1988 (Department of Energy and the National Center for Atmospheric Research: Washington, DC).

[12]   Boers R., Thermodynamic structure of the boundary layer at Cape Grim during ACE-1, in Baseline Atmospheric Program 1997–1998 (Eds N. W. Tindale, N. Derek, R. J. Francey) 2001, pp. 27–33 (Bureau of Meteorology and CSIRO Atmospheric Research: Melbourne).

[13]   Pickett M. C., Young S. A., Boers R., Platt C. M. R., Lidar observations of boundary layer clouds during the southern ocean cloud experiment, in Baseline Atmospheric Program Australia 1994–1995 (Eds R. J. Francey, A. L. Dick, N. Derek) 1996, pp. 10–21 (Bureau of Meteorology and CSIRO Division of Atmospheric Research: Melbourne).

[14]   R. Boers , J. B. Jensen , P. Krummel , H. Gerber , Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern ocean. Q. J. R. Meteorol. Soc. 1996 , 122,  1307.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   R. Boers , P. Krummel , Microphysical properties of boundary layer clouds over the Southern Ocean during ACE-1. J. Geophys. Res. 1998 , 103,  16651.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   R. Boers , J. B. Jensen , P. Krummel , Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: summer results and seasonal differences. Q. J. R. Meteorol. Soc. 1998 , 124,  151.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   J. L. Gras , CN, CCN and particle size in Southern Ocean air at Cape Grim. Atmos. Res. 1995 , 35,  233.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   A. F. Wiedensohler , F. Brechtel , D. S. Covert , R. Wernicke , F. Stratmann , W. Birmili , S. Kreidenweis , Representative aerosol size distributions for different synoptic weather situations over the Tasman Sea. J. Aerosol Sci. 1997 , 28,  S37.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   W. A. Hoppel , G. M. Frick , R. E. Larson , Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer. Geophys. Res. Lett. 1986 , 13,  125.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   I. N. Tang , H. R. Munklewitz , Water activities, densities and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 1994 , 99,  18801.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   O. H. Berg , E. Swietlicki , R. Krejci , Hygroscopic growth of aerosol particles in the marine boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE). J. Geophys. Res. 1998 , 103,  16535.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   Fuchs N., The Mechanics of Aerosols 1964 (Pergamon: New York).

[23]   Prupppacher H. R., Klett J. D., Microphysics of Clouds and Precipitation 1997 (Kluwer Academic Publishers: Dordrecht).

[24]   Seinfeld J. H., Pandis S. N., Atmospheric Chemistry and Physics from Air Pollution to Climate Change 1998 (Wiley: New York).

[25]   Matzler C., Drop-size distributions and Mie computations for rain, Research Report No. 2002–16 2002 (Institute fur Angewandte Physik: Bern, Switzerland).

[26]   R. Van Dingenen , A. Virkkula , F. Raes , T. Bates , A. Wiedensohler , A simple non-linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer. Tellus B 2000 , 52,  439.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   T. S. Bates , P. K. Quinn , D. S. Covert , D. J. Coffman , J. E. Johnson , A. Wiedensohler , Aerosol physical properties and controlling processes in the lower marine boundary layer: a comparison of submicron data from ACE-1 and ACE-2. Tellus B 2000 , 52,  258.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   V.-M. Kerminen , M. Kulmala , Analytical formulae connecting the “real” and “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. Aerosol Sci. 2002 , 33,  609.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   C. Kuang , P. H. McMurry , A. V. McCormick , Determination of cloud condensation nuclei production from measured new particle formation events. Geophys. Res. Lett. 2009 , 36,  L09822.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   C. D. O’Dowd , T. Hoffmann , Coastal new particle formation: a review of current state-of-the-art. Environ. Chem. 2005 , 2,  245.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   J. M. Cainey , M. Keywood , M. R. Grose , P. Krummel , I. E. Galbally , P. Johnston , R. W. Gillett , M. Meyer , et al. Precursors to Particles (P2P) at Cape Grim 2006: campaign overview. Environ. Chem. 2007 , 4,  143.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   B. Gantt , N. Meskhidze , D. Kamykowski , A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos. Chem. Phys. 2009 , 9,  4915.
        |  CAS |  open url image1

[33]   C. D. O’Dowd , M. C. Facchini , F. Cavalli , D. Ceburnis , M. Mircea , S. Decesari , S. Fuzzi , Y. J. Yoon , J.-P. Putaud , Biogenically driven organic contribution to marine aerosol. Nature 2004 , 431,  676.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   A. M. Middlebrook , D. M. Murphy , D. S. Thomson , Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 1998 , 103,  16475.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   B. J. Huebert , S. G. Howell , L. Zhuang , J. A. Heath , M. R. Litchy , D. J. Wylie , J. L. Kreidler-Moss , S. Coppicus , J. E. Pfeiffer , Filter and impactor measurements of anions and cations during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 1998 , 103,  16493.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   T. S. Bates , V. N. Kapustin , P. K. Quinn , D. S. Covert , D. J. Coffman , C. Mari , P. A. Durkee , W. J. De Bruyn , E. S. Saltzman , Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the first Aerosol Characterization experiment (ACE 1). J. Geophys. Res. 1998 , 103,  16369.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   F. Raes , Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 1995 , 100,  2893.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   R. Van Dingenen , F. Raes , J.-P. Putard , A. Virkkula , M. Mangoni , Processes determining the relationship between aerosol number and non-sea-salt sulfate mass concentrations in the clean and perturbed marine boundary layer. J. Geophys. Res. 1999 , 104,  8027.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   C. S. Bretherton , P. Austin , S. T. Siems , Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes and entrainment. J. Atmos. Sci. 1995 , 52,  2724.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   G. P. Ayers , H. Granek , R. Boers , Ozone in the marine boundary layer at Cape Grim: model simulation. J. Atmos. Chem. 1997 , 27,  179.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   H. Venzac , K. Sellegri , P. Villani , D. Picard , P. Laj , Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France. Atmos. Chem. Phys. 2009 , 9,  1465.
        |  CAS |  open url image1

[42]   C. Nishita , K. Osada , K. Matsunaga , Y. Iwasaka , Number-size distributions of free tropospheric aerosol particles at Mt Norikura, Japan: effects of precipitation and air mass transportation pathways. J. Geophys. Res. 2007 , 112,  D10213.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   R. J. Weber , P. H. McMurry , Fine particle size distributions at the Mauna loa observatory, Hawaii. J. Geophys. Res. 1996 , 101,  14767.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   E. K. Bigg , J. L. Gras , C. Evans , Origin of Aitken particles in remote regions of the southern hemisphere. J. Atmos. Chem. 1984 , 1,  203.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   E. K. Bigg , D. E. Turvey , Sources of atmospheric particles over Australia. Atmos. Environ. 1978 , 12,  1643.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[46]   Gras J. L., Michael C. G., Adriaansen A., Larsen H. R., Particle size distributions in the southern troposphere, in Baseline Atmospheric Program (Australia) 1985 (Eds B. W. Forgan, P. J. Fraser) 1987, pp. 15–19 (Department of Science, Bureau of Meteorology and CSIRO Division of Atmospheric Research: Melbourne).

[47]   J. G. Hudson , Y. Xie , S. S. Yum , Vertical distributions of cloud condensation nuclei spectra over the summertime Southern Ocean. J. Geophys. Res. 1998 , 103,  16609.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   C. D. O’Dowd , K. Hämeri , J. Mäkelä , M. Väkeva , P. Aalto , G. de Leeuw , G. J. Kunz , E. Becker , et al. Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts. J. Geophys. Res. 2002 , 107,  8107.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[49]   L. Pirjola , C. D. O’Dowd , M. Kulmala , A model prediction of the yield of cloud condensation nuclei from coastal nucleation events. J. Geophys. Res. 2002 , 107,  8098.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   A. Laaksonen , A. Hamed , J. Joutsensaari , L. Hiltunen , F. Cavalli , W. Junkermann , A. Asmi , S. Fuzzi , M. C. Facchini , Cloud condensation nucleus production from nucleation events at a highly polluted region. Geophys. Res. Lett. 2005 , 32,  L06812.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[51]   H. Lihavainen , V.-M. Kerminen , M. Komppula , J. Hatakka , V. Aaltonen , M. Kulmala , Y. Viisanen , Production of ‘potential’ cloud condensation nuclei associated with atmospheric new-particle formation in northern Finland. J. Geophys. Res. 2003 , 108,  4782.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   J. R. Pierce , P. J. Adams , Efficiency of cloud condensation nuclei formation from ultrafine particles. Atmos. Chem. Phys. 2007 , 7,  1367.
        |  CAS |  open url image1

[53]   J. L. Gras , S. I. Jimi , S. T. Siems , P. B. Krummel , Postfrontal nanoparticles at Cape Grim: observations. Environ. Chem. 2009 , 6,  508.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1