Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Snow – a photobiochemical exchange platform for volatile and semi-volatile organic compounds with the atmosphere

P. A. Ariya A B H , F. Domine C , G. Kos B , M. Amyot D , V. Côté B , H. Vali E , T. Lauzier C , W. F. Kuhs F , K. Techmer F , T. Heinrichs G and R. Mortazavi A
+ Author Affiliations
- Author Affiliations

A McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada.

B McGill University, Department of Atmospheric & Oceanic Sciences, 805 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada.

C Centre national de la recherche scientifique (CNRS), Laboratoire de Glaciologie et Géophysique de l’Environnement, B.P. 96, 54 Rue Molière, F-38402 Saint-Martin d’Hères, Cedex, France.

D Département des sciences biologiques, Université de Montréal, 90, Vincent D’Indy, D-223, Montréal, QC, H2V 2S9, Canada.

E Departments of Anatomy & Earth and Planetary Sciences, McGill University, 3640 University Street, Montréal, QC, H3A 2B2, Canada.

F Geowissenschaftliches Zentrum der Universität Göttingen (GZG), Abteilung Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany.

G GZG, Abteilung Allgemeine und Angewandte Geologie, Universität Goettingen, Goldschmidtstrasse 3, D-37077 Göttingen, Germany.

H Corresponding author. Email: parisa.ariya@mcgill.ca

Environmental Chemistry 8(1) 62-73 https://doi.org/10.1071/EN10056
Submitted: 26 May 2010  Accepted: 12 October 2010   Published: 28 February 2011

Environmental context. Recent research has been directed towards the exchange of microorganisms and chemical compounds between snow and air. We investigate how microorganisms and chemical species in snow from the Arctic and temperate regions are transferred to the atmosphere and altered by the sun's energy. Results suggest that snow photo-biochemical reactions, in addition to physical‐chemical reactions, should be considered in describing organic matter in air–snow exchanges, and in investigations of climate change.

Abstract. Field and laboratory studies of organic compounds in snow (12 species; concentrations ≤17 µg L–1) were conducted and microorganisms in snow and aerosols at urban and Arctic sites were investigated (snow: total bacteria count ≤40000 colony forming units per millilitre (CFU mL–1), fungi ≤400 CFU mL–1; air: bacteria ≤2.2 × 107 CFU m–3, fungi ≤84 CFU m–3). Bio-organic material is transferred between snow and air and influence on snow-air exchange processes is demonstrated. Volatile organic compounds in snow are released into the air upon melting. In vitro photochemistry indicated an increase of ≤60 µg L–1 for 1,3- and 1,4-dimethylbenzenes. Bacillus cereus was identified and observed in snow and air with ice-nucleating being P. syringae absent. As a result snow photobiochemical reactions should be considered in describing organic matter air–snow exchanges, and the investigation of climate change.


References

[1]  F. Domine, P. B. Shepson, Air–snow interactions and atmospheric chemistry. Science 2002, 297, 1506.
Air–snow interactions and atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslSjs7k%3D&md5=75f6c5758eac7cf49097ea699a8b2408CAS | 12202818PubMed |

[2]  A. L. Sumner, P. B. Shepson, Snowpack production of formaldehyde and its effect on the arctic troposphere. Nature 1999, 398, 230..
Snowpack production of formaldehyde and its effect on the arctic troposphere.Crossref | GoogleScholarGoogle Scholar |

[3]  P. Ariya, A. Dastoor, M. Amyot, W. Schroeder, L. Barrie, K. Anlauf, F. Raofie, A. Ryzhkov, D. Davignon, J. Lalonde, A. Steffen, The arctic: a sink for mercury. Tellus B Chem. Phys. Meterol. 2004, 56, 397.
The arctic: a sink for mercury.Crossref | GoogleScholarGoogle Scholar |

[4]  H. Beine, F. Domine, A. Ianniello, M. Nardino, I. Allegrini, K. Teinila, R. Hillamo, Fluxes of nitrates between snow surfaces and the atmosphere in the European High Arctic. Atmos. Chem. Phys. 2003, 3, 335.
Fluxes of nitrates between snow surfaces and the atmosphere in the European High Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFKhtrY%3D&md5=eb19a9ef841b1d506e7d86600e650795CAS |

[5]  M. Hutterli, R. Bales, J. McConnell, R. Stewart, HCHO in Antarctic snow: preservation in ice cores and air–snow exchange. Geophys. Res. Lett. 2002, 29, 1235.
HCHO in Antarctic snow: preservation in ice cores and air–snow exchange.Crossref | GoogleScholarGoogle Scholar |

[6]  S. Preunkert, M. Legrand, D. Wagenbach, Sulfate trends in a Col du Dome (French Alps) ice core: a record of anthropogenic sulfate levels in the European midtroposphere over the twentieth century. J. Geophys. Res. – Atmos. 2001, 106, 31991.
Sulfate trends in a Col du Dome (French Alps) ice core: a record of anthropogenic sulfate levels in the European midtroposphere over the twentieth century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVemtrg%3D&md5=201c51a83b2b78dfcfd95f4b76ac45fbCAS |

[7]  E. Saltzman, M. Aydin, W. De Bruyn, D. King, S. Yvon-Lewis, Methyl bromide in preindustrial air: measurements from an Antarctic ice core. J. Geophys. Res. – Atmos. 2004, 109, D05301.
Methyl bromide in preindustrial air: measurements from an Antarctic ice core.Crossref | GoogleScholarGoogle Scholar |

[8]  R. Honrath, S. Guo, M. Peterson, M. Dziobak, J. Dibb, M. Arsenault, Photochemical production of gas phase NOx from ice crystal NO3–. J. Geophys. Res. – Atmos. 2000, 105, 24183.
Photochemical production of gas phase NOx from ice crystal NO3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Crsbk%3D&md5=5bda87c10defaf064d2f0c660e39ee17CAS |

[9]  S. Perrier, P. Sassin, F. Domine, Diffusion and solubility of HCHO in ice: preliminary results. Can. J. Phys. 2003, 81, 319.
Diffusion and solubility of HCHO in ice: preliminary results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvV2rtLo%3D&md5=f140b11a81d0e4be4a76103ca294175dCAS |

[10]  A. Amoroso, F. Domine, G. Esposito, S. Morin, J. Savarino, M. Nardino, M. Montagnoli, J. Bonneville, J. Clement, A. Ianiello, H. Beine, Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ. Sci. Technol. 2010, 44, 714.
Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGnt7bM&md5=1c6f53fef4aee66b870af54dd4eb6191CAS | 20000750PubMed |

[11]  M. Felip, B. Sattler, R. Psenner, J. Catalan, Highly active microbial communities in the ice and snow cover of high-mountain lakes. Appl. Environ. Microbiol. 1995, 61, 2394..
| 16535056PubMed |

[12]  C. Morris, D. Georgakopoulos, D. Sands, Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV 2004, 121, 87.
Ice nucleation active bacteria and their potential role in precipitation.Crossref | GoogleScholarGoogle Scholar |

[13]  S. Rogers, W. Starmer, J. Castello, Recycling of pathogenic microbes through survival in ice. Med. Hypotheses 2004, 63, 773.
Recycling of pathogenic microbes through survival in ice.Crossref | GoogleScholarGoogle Scholar | 15488645PubMed |

[14]  H. G. Jones, Snow Ecology: an Interdisciplinary Examination of Snow-covered Ecosystems 2001 (Cambridge University Press: Cambridge, UK).

[15]  H. Trinks, W. Schroder, C. Biebricher, Ice and the origin of life. Orig. Life Evol. Biosph. 2005, 35, 429.
Ice and the origin of life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFaht7%2FL&md5=5fdaf40e879d009ea5884521f821da5eCAS | 16231207PubMed |

[16]  B. Sattler, H. Puxbaum, R. Psenner, Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 2001, 28, 239.
Bacterial growth in supercooled cloud droplets.Crossref | GoogleScholarGoogle Scholar |

[17]  K. Kashefi, D. Lovley, Extending the upper temperature limit for life. Science 2003, 301, 934.
Extending the upper temperature limit for life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVyisb8%3D&md5=61011be19c4dcf1f79cb9e0b8d3c10dcCAS | 12920290PubMed |

[18]  P. Price, T. Sowers, Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 2004, 101, 4631.
Temperature dependence of metabolic rates for microbial growth, maintenance, and survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFKisLs%3D&md5=39b8f06fe103e606b5be0cfb5aeb660fCAS |

[19]  D. Thomas, G. Dieckmann, Ocean science – Antarctic sea ice – a habitat for extremophites. Science 2002, 295, 641.
Ocean science – Antarctic sea ice – a habitat for extremophites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptF2gtg%3D%3D&md5=f8ab2342ef4caa54ff063a2279d39402CAS | 11809961PubMed |

[20]  R. Mortazavi, C. T. Hayes, P. A. Ariya, Ice nucleation activity of bacteria isolated from snow compared with organic and inorganic substrates. Environ. Chem. 2008, 5, 373.
Ice nucleation activity of bacteria isolated from snow compared with organic and inorganic substrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWgu7bI&md5=01a712c05021c363ce5f0596334bb347CAS |

[21]  J. Field, R. Sierra-Alvarez, Microbial degradation of chlorinated benzenes. Biodegradation 2008, 19, 463.
Microbial degradation of chlorinated benzenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFKlt7w%3D&md5=4c6578b72b99953a80fa9707ae6aa475CAS | 17917704PubMed |

[22]  R. Dickhut, A. Cincinelli, M. Cochran, H. Ducklow, Atmospheric concentrations and air–water flux of organochlorine pesticides along the western Antarctic Peninsula. Environ. Sci. Technol. 2005, 39, 465.
Atmospheric concentrations and air–water flux of organochlorine pesticides along the western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCmsLvP&md5=7c2c0e1cb806176ac4735754574bb0b6CAS | 15707045PubMed |

[23]  P. Amato, R. Hennebelle, O. Magand, M. Sancelme, A. Delort, C. Barbante, C. Boutron, C. Ferrari, Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol. Ecol. 2007, 59, 255.
Bacterial characterization of the snow cover at Spitzberg, Svalbard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslGrsr0%3D&md5=49286f2a14ea850b9c7cb5f31a2a1e27CAS | 17328766PubMed |

[24]  P. Ariya, O. Nepotchatykh, O. Ignatova, M. Amyot, Microbiological degradation of atmospheric organic compounds. Geophys. Res. Lett. 2002, 29, 2077.
Microbiological degradation of atmospheric organic compounds.Crossref | GoogleScholarGoogle Scholar |

[25]  G. Kos, P. Ariya, Determination of a wide range of volatile and semivolatile organic compounds in snow by use of solid-phase micro-extraction (SPME). Anal. Bioanal. Chem. 2006, 385, 57.
Determination of a wide range of volatile and semivolatile organic compounds in snow by use of solid-phase micro-extraction (SPME).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslKjt7w%3D&md5=7929823d9ed3351ab8999ebcccd0d048CAS | 16544130PubMed |

[26]  M. Narukawa, K. Kawamura, S. Li, J. Bottenheim, Dicarboxylic acids in the arctic aerosols and snowpacks collected during alert 2000. Atmos. Environ. 2002, 36, 2491.
Dicarboxylic acids in the arctic aerosols and snowpacks collected during alert 2000.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKmsLo%3D&md5=3d25954eed794876783ffae9d673e5f6CAS |

[27]  S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403..
| 2231712PubMed |

[28]  J. Felsenstein, Inferring Phylogenies 2004 (Sinauer Associates: Sunderland, MA).

[29]  F. Domine, M. Albert, T. Huthwelker, H. Jacobi, A. Kokhanovsky, M. Lehning, G. Picard, W. Simpson, Snow physics as relevant to snow photochemistry. Atmos. Chem. Phys. 2008, 8, 171.
Snow physics as relevant to snow photochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVyrsrY%3D&md5=aab35c397a5d2d24e317888be26c53f6CAS |

[30]  F. Wania, J. Hoff, C. Jia, D. Mackay, The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals. Environ. Pollut. 1998, 102, 25.
The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFelsb8%3D&md5=4f103cffbf3b6e15b018340c7ee7d53bCAS |

[31]  J. Sun, P. Ariya, Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos. Environ. 2006, 40, 795.
Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ymtg%3D%3D&md5=5655016ef4c8b9073f30cd0b22f6a7f0CAS |

[32]  H. Bauer, H. Giebl, R. Hitzenberger, A. Kasper-Giebl, G. Reischl, F. Zibuschka, H. Puxbaum, Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. – Atmos. 2003, 108, 4658.
Airborne bacteria as cloud condensation nuclei.Crossref | GoogleScholarGoogle Scholar |

[33]  P. Amato, M. Parazols, M. Sancelme, P. Laj, G. Mailhot, A. Delort, Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: major groups and growth abilities at low temperatures. FEMS Microbiol. Ecol. 2007, 59, 242.
Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: major groups and growth abilities at low temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslGrsrw%3D&md5=969032524878d0bcf175271e78be4a41CAS | 17328765PubMed |

[34]  C. Grote, E. Belau, K. Levsen, G. Wunsch, Development of a SPME-GC method for the determination of organic compounds in wastewater. Acta Hydrochim. Hydrobiol. 1999, 27, 193.
Development of a SPME-GC method for the determination of organic compounds in wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVGjs7w%3D&md5=abd1dc46db8ecade7752411d7e957a66CAS |

[35]  K. Sieg, E. Fries, W. Puttmann, Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry. J. Chromatogr. A 2008, 1178, 178.
Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSnug%3D%3D&md5=00ca6fcc70498f93d04db77ac0918be1CAS | 18054787PubMed |

[36]  E. Fries, K. Sieg, W. Puttmann, W. Jaeschke, R. Winterhalter, J. Williams, G. Moortgat, Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes in snow–ice at Jungfraujoch (46.6°N, 8.0°E) during Clace 4 and 5. Sci. Total Environ. 2008, 391, 269.
Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes in snow–ice at Jungfraujoch (46.6°N, 8.0°E) during Clace 4 and 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKjtw%3D%3D&md5=8d3c42de1d23f86ed0cc238471185b20CAS | 18031793PubMed |

[37]  B. Pons, M. Fernandez-Torroba, G. Ortiz, M. Tena, Monitoring and evolution of the pollution by volatile organic compounds (VOCS) in the groundwaters of the najerilla river basin (Spain). Int. J. Environ. Anal. Chem. 2003, 83, 495.
Monitoring and evolution of the pollution by volatile organic compounds (VOCS) in the groundwaters of the najerilla river basin (Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFKmtbc%3D&md5=ebcd19059c99627c7acd80cc44a35c68CAS |

[38]  J. Czuczwa, C. Leuenberger, W. Giger, Seasonal and temporal changes of organic compounds in rain and snow. Atmos. Environ. 1988, 22, 907.
Seasonal and temporal changes of organic compounds in rain and snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXks1Whsb4%3D&md5=0595d2bd74a486517406e6f6367cd3b3CAS |

[39]  A. E. Cavender, T. A. Biesenthal, J. W. Bottenheim, P. B Shepson, Volatile organic compound ratios as probes of halogen atom chemistry in the arctic. Atmos. Chem. Phys. 2008, 8, 1737.
Volatile organic compound ratios as probes of halogen atom chemistry in the arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFekt7g%3D&md5=2d7f01524998813bc685510103854df8CAS |

[40]  A. M. Grannas, P. B. Shepson, C. Guimbaud, A. L. Sumner, M. Albert, W. Simpson, F. Domine, H. Boudries, J. Bottenheim, H. J. Beine, R. Honrath, X. Zhou, A study of photochemical and physical processes affecting carbonyl compounds in the arctic atmospheric boundary layer. Atmos. Environ. 2002, 36, 2733.
A study of photochemical and physical processes affecting carbonyl compounds in the arctic atmospheric boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKmtrg%3D&md5=d7b96059b684b9f22666a775785b0c8fCAS |

[41]  D. Lary, D. Shallcross, Central role of carbonyl compounds in atmospheric chemistry. J. Geophys. Res. – Atmos. 2000, 105, 19771.
Central role of carbonyl compounds in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsF2nt7g%3D&md5=1ffd60cc202428fd432319cf5e65a8bdCAS |

[42]  J. Yang, R. E. Honrath, M. C. Peterson, J. E. Dibb, A. L. Sumner, P. B. Shepson, M. Frey, H.-W. Jacobi, A. Swanson, N. Blake, Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at summit, Greenland. Atmos. Environ. 2002, 36, 2523.
Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at summit, Greenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKmsLk%3D&md5=1f6f9b2f3fea12abd07a46f583b673a2CAS |

[43]  K. Kawamura, I. Kaplan, Motor exhaust emissions as a primary source for dicarboxylic-acids in Los Angeles ambient air. Environ. Sci. Technol. 1987, 21, 105.
Motor exhaust emissions as a primary source for dicarboxylic-acids in Los Angeles ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXit1Giuw%3D%3D&md5=586b4404d55e0b5771c70b96139427c3CAS |

[44]  K. Kawamura, H. Kasukabe, L. Barrie, Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atmos. Environ. 1996, 30, 1709.
Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVKmtbw%3D&md5=861c4e6005201490a576cb203478d038CAS |

[45]  B. Steven, R. Leveille, W. Pollard, L. Whyte, Microbial ecology and biodiversity in permafrost. Extremophiles 2006, 10, 259.
Microbial ecology and biodiversity in permafrost.Crossref | GoogleScholarGoogle Scholar | 16550305PubMed |

[46]  K. Stemmler, M. Ammann, C. Donders, J. Kleffmann, C. George, Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 2006, 440, 195.
Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFGitbk%3D&md5=131387b07a3f7894872ebd64c616a101CAS | 16525469PubMed |

[47]  G. Vali, Atmospheric ice nucleation – a review. J. Rech. Atmos. 1985, 19, 105..

[48]  C. Leck, E. Bigg, Biogenic particles in the surface microlayer and overlaying atmosphere in the central arctic ocean during summer. Tellus B Chem. Phys. Meterol. 2005, 57, 305.
Biogenic particles in the surface microlayer and overlaying atmosphere in the central arctic ocean during summer.Crossref | GoogleScholarGoogle Scholar |

[49]  F. Dominé, T. Lauzier, A. Cabanes, L. Legagneux, W. Kuhs, K. Techmer, T. Heinrichs, Snow metamorphism as revealed by scanning electron microscopy. Microsc. Res. Tech. 2003, 62, 33.
Snow metamorphism as revealed by scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar | 12938116PubMed |

[50]  W. Wergin, A. Rango, E. Erbe, C. Murphy, Low temperature SEM of precipitated and metamorphosed snow crystals collected and transported from remote sites. Microsc. Microanal. 1996, 2, 99..

[51]  W. Wergin, A. Rango, E. Erbe, Observations of snow crystals using low-temperature scanning electron-microscopy. Scanning 1995, 17, 41.
Observations of snow crystals using low-temperature scanning electron-microscopy.Crossref | GoogleScholarGoogle Scholar |

[52]  T. Callaghan, L. Bjorn, Y. Chernov, T. Chapin, T. Christensen, B. Huntley, R. Ims, M. Johansson, D. Jolly, S. Jonasson, N. Matveyeva, N. Panikov, W. Oechel, G. Shaver, Effects on the function of arctic ecosystems in the short-and long-term perspectives. Ambio 2004, 33, 448..
| 15573572PubMed |

[53]  F. Domine, A. Taillandier, W. Simpson, A parameterization of the specific surface area of seasonal snow for field use and for models of snowpack evolution. J. Geophys. Res. – Earth 2007, 112, F02031.
A parameterization of the specific surface area of seasonal snow for field use and for models of snowpack evolution.Crossref | GoogleScholarGoogle Scholar |

[54]  L. Legagneux, A. Cabanes, F. Domine, Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K. J. Geophys. Res. – Atmos. 2002, 107, 4335.
Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K.Crossref | GoogleScholarGoogle Scholar |

[55]  U. Böckelmann, W. Manz, T. R. Neu, U. Szewzyk, Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol. Ecol. 2000, 33, 157.
Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods.Crossref | GoogleScholarGoogle Scholar | 10967215PubMed |

[56]  M. Alexander, Introduction to Soil Microbiology 1977 (Wiley: New York).

[57]  A. Grannas, A. Bausch, K. Mahanna, Enhanced aqueous photochemical reaction rates after freezing. J. Phys. Chem. A 2007, 111, 11043.
Enhanced aqueous photochemical reaction rates after freezing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFaqsL%2FP&md5=d27018fed01a51b09a1968fefce05d90CAS | 17918916PubMed |

[58]  H. Okochi, D. Sugimoto, M. Igawa, The enhanced dissolution of some chlorinated hydrocarbons and monocyclic aromatic hydrocarbons in rainwater collected in Yokohama, Japan. Atmos. Environ. 2004, 38, 4403.
The enhanced dissolution of some chlorinated hydrocarbons and monocyclic aromatic hydrocarbons in rainwater collected in Yokohama, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFertrg%3D&md5=1d10990cc5976d9e4fd75ca839eb403bCAS |

[59]  J. Bower, E. Hood, L. Hoferkamp, Major solutes, metals, and alkylated aromatic compounds in high-latitude maritime snowpacks near the trans-Alaska pipeline terminal, Valdez, Alaska. Environ. Res. Lett. 2008, 3, 045010.
Major solutes, metals, and alkylated aromatic compounds in high-latitude maritime snowpacks near the trans-Alaska pipeline terminal, Valdez, Alaska.Crossref | GoogleScholarGoogle Scholar |

[60]  E. Fries, W. Puttmann, Monitoring of the antioxidant BHT and its metabolite BHT-CHO in German river water and ground water. Sci. Total Environ. 2004, 319, 269.
Monitoring of the antioxidant BHT and its metabolite BHT-CHO in German river water and ground water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOqurY%3D&md5=e1f481f00d381b1494b32975f50d82aaCAS | 14967516PubMed |

[61]  M. Bao, F. Pantani, O. Griffini, D. Burrini, D. Santianni, K. Barbieri, Determination of carbonyl compounds in water by derivatisation–solid-phase microextraction and gas chromatographic analysis. J. Chromatogr. A 1998, 809, 75.
Determination of carbonyl compounds in water by derivatisation–solid-phase microextraction and gas chromatographic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVegsL0%3D&md5=e5c417aa348691008c241917f648e5dcCAS | 9677712PubMed |