Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT (Open Access)

Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination

A. Kärrman A C , K. Elgh-Dalgren A , C. Lafossas A and T. Møskeland B
+ Author Affiliations
- Author Affiliations

A Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.

B Det Norske Veritas (DNV), Veritasveien 1, N-1322 Høvik, Norway.

C Corresponding author. Email: anna.karrman@oru.se

Environmental Chemistry 8(4) 372-380 https://doi.org/10.1071/EN10145
Submitted: 31 December 2010  Accepted: 16 February 2011   Published: 19 August 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. Perfluoroalkyl acids are used in many products and have spread into the environment where their persistence and potential toxicity pose a threat to humans and wildlife. The present study describes environmental contamination from usage of aqueous film forming foams, and investigates the distribution of structural isomers of perfluoroalkyl acids from a point source to the surrounding environment. Isomer patterns might be used to track contamination sources since isomer composition differs in the various products containing perfluoroalkyl acids. The environmental behaviour of these structural isomers is described, and limitations of their use to track contamination sources are identified.

Abstract. The environment (soil, water, sediment, fish, crab and mussel) around a training facility using aqueous film forming foams (AFFFs) was studied with respect to perfluorinated alkyl acids (PFAAs) and 6 : 2 fluorotelomer sulfonate (FTS) and their structural isomers. High levels of many PFAAs and 6 : 2 FTS were detected in soil, seepage water, sediment and fish liver. Structural isomers were found for sulfonates, except PFBuS, and for PFOA. Quantification using authentic standards revealed an isomer pattern of 63% linear PFOS (L-PFOS) and 80% linear PFOA (L-PFOA) in the soil at the contamination site, which indicated a source produced by electrochemical fluorination (ECF). The 6 : 2 FTS was 100% linear in all compartments thus coming from a telomerisation product. Enrichment of the linear structure of PFOS and PFOA in soil was seen with increasing distance from the training centre, and an enrichment of branched isomers for both compounds could be found in the seepage water. Sorption to sediment and accumulation in fish liver led to an enrichment of L-PFOS whereas all PFOA remained in the water body.

Additional keywords: 6 : 2 fluorotelomer sulfonates, 6 : 2 FTS, perfluorooctane sulfonate, perfluorooctanecarbocylic acid, PFOA, PFOS.


References

[1]  E. Kissa, Fluorinated Surfactants and Repellents, 2nd edn (Ed. A. T. Hubbard) 2001 (Marcel Dekker Inc.: New York).

[2]  C. A. Moody, J. Field, Perfluorinated Surfactants and the environmental implications of their use in fire-fighting foams. Environ. Sci. Technol. 2000, 34, 3864.
Perfluorinated Surfactants and the environmental implications of their use in fire-fighting foams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFCksLw%3D&md5=524f2356bf4a65deb8a8cf43bbe333c1CAS |

[3]  A. G. Paul, K. C. Jones, A. J. Sweetman, A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386.
A first global production, emission, and environmental inventory for perfluorooctane sulfonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyks7%2FJ&md5=63238d1759e406591a922fb0ed3a709cCAS |

[4]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=14e91a9069cf17a00b47907f105e54b6CAS |

[5]  The new POPsAn introduction to the nine chemicals added to the Stockholm convention by the Conference of the Parties at its fourth meeting, August 2010 2010 (Secretariat of the Stockholm Convention United Nations Environment Programme). Available at http://chm.pops.int/Programmes/New%20POPs/Publications/tabid/695/language/en-US/Default.aspx [Verified 4 April 2011].

[6]  3M phase-out plan for POSF-based products. EPA Docket 0PPT-2002-0043-0009 2002 (US Environmental Protection Agency: St Paul, MN). Available at http://www.fluoridealert.org/pesticides/pfos.fr.final.docket.0009.pdf [Verified 25 April 2011].

[7]  Perfluoralkylstoffer (PFAS) og perfluoroktanylsulfonat (PFOS)-relaterte forbindelser. Handlingsplan 2005 (The Norwegian Climate and Pollution Agency (KLIF)). Available at http://www.klif.no/arbeidsomr/kjemikalier/pfos/pfas_handlingsplan.pdf [In Norwegian. Verified 4 April 2011].

[8]  DuPont Forafac 1157 2010. Available at http://www2.dupont.com/Forafac/en_US/assets/downloads/Forafac11571.pdf [Verified 4 April 2011].

[9]  M. Schultz, D. F. Barofsky, J. Field, Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environ. Sci. Technol. 2004, 38, 1828.
Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosl2jtA%3D%3D&md5=bd1c38c927aca152100c5e5bd504e473CAS |

[10]  3M, Voluntary use and exposure information profile, perfluorooctane sulfonic acid and various salt forms. US EPA Report AR226-0928 2000 (US Environmental Protection Agency).

[11]  N. Riddell, G. Arsenault, J. P. Benskin, B. Chittim, J. W. Martin, A. McAlees, R. McCrindle, Branched perfluorooctane sulfonate isomer quantification and characterization in blood serum samples by HPLC/ESI-MS(/MS). Environ. Sci. Technol. 2009, 43, 7902.
Branched perfluorooctane sulfonate isomer quantification and characterization in blood serum samples by HPLC/ESI-MS(/MS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqtbbJ&md5=0d5272677575709c0b7c8d377b5d2b7bCAS |

[12]  A. O. De Silva, S. A. Mabury, Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations. Environ. Sci. Technol. 2004, 38, 6538.
Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptF2lsr4%3D&md5=e5c534296cd8c1392f48bbc6e6c4963cCAS |

[13]  J. P. Benskin, L. W. Yeung, N. Yamashita, S. Taniyasu, P. K. S. Lam, J. W. Martin, Perfluorinated acid isomer profiling in water and quantitative assessment of manufacturing source. Environ. Sci. Technol. 2010, 44, 9049.
Perfluorinated acid isomer profiling in water and quantitative assessment of manufacturing source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2jtbbK&md5=ff0ac893d479356431cf3497abbd62d0CAS |

[14]  A. O. De Silva, D. C. Muir, S. A. Mabury, Distribution of perfluorocarboxylate isomers in selected samples from the North American environment. Environ. Toxicol. Chem. 2009, 28, 1801.
Distribution of perfluorocarboxylate isomers in selected samples from the North American environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmt7rF&md5=838c450284307d4b965a80ff1f8a5d70CAS |

[15]  V. I. Furdui, P. A. Helm, P. W. Crozier, C. Lucaciu, E. J. Reiner, C. H. Marvin, D. M. Whittle, S. A. Mabury, G. T. Tomy, Temporal trends of perfluoroalkyl compounds with isomer analysis in Lake Trout from Lake Ontario (1979–2004). Environ. Sci. Technol. 2008, 42, 4739.
Temporal trends of perfluoroalkyl compounds with isomer analysis in Lake Trout from Lake Ontario (1979–2004).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFOltbc%3D&md5=954dc8b4aed94b068aae016882e8d3dcCAS |

[16]  M. Houde, G. Czub, J. M. Small, S. Backus, X. Wang, M. Alaee, D. C. G. Muir, Fractionation and bioaccumulation of perfluorooctane sulfonate (PFOS) isomers in a Lake Ontario food web. Environ. Sci. Technol. 2008, 42, 9397.
Fractionation and bioaccumulation of perfluorooctane sulfonate (PFOS) isomers in a Lake Ontario food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyisbjP&md5=abca416bfa31123f22da887eb1115a5dCAS |

[17]  S. Chu, R. J. Letcher, Linear and branched perfluorooctane sulfonate isomers in technical product and environmental samples by in-port derivatization-gas chromatography-mass spectrometry. Anal. Chem. 2009, 81, 4256.
Linear and branched perfluorooctane sulfonate isomers in technical product and environmental samples by in-port derivatization-gas chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1SgsLg%3D&md5=8daef32530d74be83b60760e13a3a182CAS |

[18]  W. A. Gebbink, R. J. Letcher, Linear and branched perfluorooctane sulfonate isomer patterns in herring gull eggs from the colonial sites across the Laurentian Great Lakes. Environ. Sci. Technol. 2010, 44, 3739.
Linear and branched perfluorooctane sulfonate isomer patterns in herring gull eggs from the colonial sites across the Laurentian Great Lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFWgsbs%3D&md5=9fd384d471e4a4ef2c9e2a8f0aaec4d3CAS |

[19]  C. A. Moody, J. A. Field, Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity. Environ. Sci. Technol. 1999, 33, 2800.
Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFektrw%3D&md5=4ce9c071f659e016bbfd0d7414b229c2CAS |

[20]  C. A. Moody, G. N. Hebert, S. H. Strauss, J. Field, Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. J. Environ. Monit. 2003, 5, 341.
Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitleqtrk%3D&md5=3c764fbbbd2ceeb28642c131f00bd059CAS |

[21]  K. D. Oakes, J. P. Benskin, J. W. Martin, J. S. Ings, J. Y. Heinrichs, D. G. Dixon, M. R. Servos, Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of Etobicoke Creek following deployment of aqueous film-forming foam. Aquat. Toxicol. 2010, 98, 120.
Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of Etobicoke Creek following deployment of aqueous film-forming foam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFahtrY%3D&md5=27d62a86c977f0677a018e842e8b7f37CAS |

[22]  Water quality – Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) – Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry ISO/DIS 25101:2009 2009 (International Organization of Standardization). Available at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42742 [Verified 4 April 2011].

[23]  J. M. Conder, R. A. Hoke, W. De Wolf, M. H. Russell, R. C. Buck, Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ. Sci. Technol. 2008, 42, 995.
Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFWmsw%3D%3D&md5=a5859b58e71eafefd64bade38f26a3c1CAS |

[24]  J. P. Benskin, A. O. De Silva, J. W. Martin, Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications. Rev. Environ. Contam. Toxicol. 2010, 208, 111.
Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWjt77L&md5=da2f7e058f4bdd66257f7cada8195a8eCAS |

[25]  G. Arsenault, B. Chittim, J. Gu, A. McAlees, R. McCrindle, V. Robertson, Separation and fluorine nuclear magnetic resonance spectroscopic (19F NMR) analysis of individual branched isomers present in technical perfluorooctanesulfonic acid (PFOS). Chemosphere 2008, 73, S53.
Separation and fluorine nuclear magnetic resonance spectroscopic (19F NMR) analysis of individual branched isomers present in technical perfluorooctanesulfonic acid (PFOS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWitLzN&md5=04080835b001ccc527d0c534f2f4d371CAS |

[26]  S. M. Vyas, I. Kania-Korwel, H. Lehmler, Differences in the isomer composition of perfluoroctanesulfonyl (PFOS) derivatives. J. Environ. Sci. Health A 2007, 42, 249.
Differences in the isomer composition of perfluoroctanesulfonyl (PFOS) derivatives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2ju7o%3D&md5=a7192b5cea1ea320c5172dea8732edfdCAS |

[27]  J. P. Benskin, A. Holt, J. W. Martin, Isomer-specific biotransformation rates of a perfluorooctane sulfonate (PFOS)-precursor by cytochrome P450 isozymes and human liver microsomes. Environ. Sci. Technol. 2009, 43, 8566.
Isomer-specific biotransformation rates of a perfluorooctane sulfonate (PFOS)-precursor by cytochrome P450 isozymes and human liver microsomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12msrvI&md5=b15120e08693e81530727cd34559df0eCAS |

[28]  S. E. Loveless, C. Finlay, N. E. Everds, S. R. Frame, P. J. Gillies, J. C. O’Connor, C. R. Powley, G. L. Kennedy, Comparative responses of rats and mice exposed to linear/branched, linear, or branched ammonium perfluorooctanoate (APFO). Toxicology 2006, 220, 203.
Comparative responses of rats and mice exposed to linear/branched, linear, or branched ammonium perfluorooctanoate (APFO).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVWksL8%3D&md5=ae4cd4814cda61a698afceb2da1cf15aCAS |