Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Evaluation of aromatic oxidation reactions in seven chemical mechanisms with an outdoor chamber

Harshal M. Parikh A , Harvey E. Jeffries A , Ken G. Sexton A , Deborah J. Luecken B , Richard M. Kamens A and William Vizuete A C
+ Author Affiliations
- Author Affiliations

A Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, 1302 MHRC, CB 7431, Chapel Hill, NC 27599-7431, USA. Email: harshal@email.unc.edu; harvey@email.unc.edu; kgsexton@email.unc.edu; luecken.deborah@epa.gov; kamens@unc.edu

B US Environmental Protection Agency, 109 T.W. Alexander Drive, Mail Drop E243-03, Research Triangle Park, NC 27709, USA.

C Corresponding author. Email: vizuete@unc.edu

Environmental Chemistry 10(3) 245-259 https://doi.org/10.1071/EN13039
Submitted: 15 February 2013  Accepted: 9 May 2013   Published: 28 June 2013

Environmental context. Regulatory air quality models used to develop strategies to reduce ozone and other pollutants must be able to accurately predict ozone produced from aromatic hydrocarbons. In urban areas, major sources of aromatic hydrocarbons are gasoline and diesel-powered vehicles. Our findings show that the representation of aromatic hydrocarbon chemistry in air quality models is an area of high uncertainty

Abstract. Simulations using seven chemical mechanisms are intercompared against O3, NOx and hydrocarbon data from photooxidation experiments conducted at the University of North Carolina outdoor smog chamber. The mechanisms include CB4–2002, CB05, CB05-TU, a CB05 variant with semi-explicit aromatic chemistry (CB05RMK), SAPRC07, CS07 and MCMv3.1. The experiments include aromatics, unsaturated dicarbonyls and volatile organic compound (VOC) mixtures representing a wide range of urban environments with relevant hydrocarbon species. In chamber simulations the sunlight is characterised using new solar radiation modelling software. A new heterogeneous chamber wall mechanism is also presented with revised chamber wall chemical processes. Simulations from all mechanisms, except MCMv3.1, show median peak O3 concentration relative errors of less than 25 % for both aromatic and VOC mixture experiments. Although MCMv3.1 largely overpredicts peak O3 levels, it performs relatively better in predicting the peak NO2 concentration. For aromatic experiments, all mechanisms except CB4–2002, largely underpredict the NO–NO2 crossover time and over-predict both the absolute NO degradation slope and the slope of NO2 concentration rise. This suggests a major problem of a faster and earlier NO to NO2 oxidation rate across all the newer mechanisms. Results from individual aromatic and unsaturated dicarbonyl experiments illustrate the unique photooxidation chemistry and O3 production of several aromatic ring-opening products. The representation of these products as a single mechanism species in CB4–2002, CB05 and CB05-TU is not adequate to capture the O3 temporal profile. In summary, future updates to chemical mechanisms should focus on the chemistry of aromatic ring-opening products.

Additional keywords: aromatics, CB05, MCM, ozone, SAPRC.


References

[1]  S. Houweling, F. Dentener, J. Lelieveld, The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. – Atmos. 1998, 103, 10673.
The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslajtL4%3D&md5=9de51ddf334eaaf7af234f3db531a9a9CAS |

[2]  J. G. Calvert, R. Atkinson, K. Becker, R. Kamens, J. H. Seinfeld, T. Wallington, G. Yarwood, The mechanisms of atmospheric oxidation of aromatic hydrocarbons 2002 (Oxford University Press: New York).

[3]  H. R. Cheng, H. Guo, S. M. Saunders, S. H. M. Lam, F. Jiang, X. M. Wang, I. J. Simpson, D. R. Blake, P. K. K. Louie, T. J. Wang, Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model. Atmos. Environ. 2010, 44, 4199.
Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChsL%2FF&md5=40648ff9cf9538b4e2f8117f3448923cCAS |

[4]  M. Zavala, W. Lei, M. J. Molina, L. T. Molina, Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City. Atmos. Chem. Phys. 2009, 9, 39.
Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisleisbk%3D&md5=30922ec905032e5fcfa92a6bbc30187bCAS |

[5]  R. M. Kamens, H. F. Zhang, E. H. Chen, Y. Zhou, H. M. Parikh, R. L. Wilson, K. E. Galloway, E. P. Rosen, Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 2011, 45, 2324.
Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbs%3D&md5=70dcfaa60ebb5bdf1b9cec81061bbb5dCAS |

[6]  Y. Zhou, H. F. Zhang, H. M. Parikh, E. H. Chen, W. Rattanavaraha, E. P. Rosen, W. X. Wang, R. M. Kamens, Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882.
Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOgsrw%3D&md5=c9e1cc03e5d99df2c1fe20023a695aebCAS |

[7]  J. Lee-Taylor, S. Madronich, B. Aumont, A. Baker, M. Camredon, A. Hodzic, G. S. Tyndall, E. Apel, R. A. Zaveri, Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume. Atmos. Chem. Phys. 2011, 11, 13219.
Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsV2qsrY%3D&md5=797e599c4a887a985b03589f60019efaCAS |

[8]  Health effects notebook for hazardous air pollutants 2013 (EPA). Available at http://www.epa.gov/ttn/atw/hlthef/hapindex.html [Verified 3 June 2013].

[9]  M. C. Dodge, Chemical oxidant mechanisms for air quality modeling: critical review. Atmos. Environ. 2000, 34, 2103.
Chemical oxidant mechanisms for air quality modeling: critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlaju7o%3D&md5=e4302cee068326c5301531cc06b5d725CAS |

[10]  S. M. Saunders, M. E. Jenkin, R. G. Derwent, M. J. Pilling, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161.
Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Sntr8%3D&md5=7a107969d806fb78916aefa45c5cb0c7CAS |

[11]  M. E. Jenkin, S. M. Saunders, M. J. Pilling, The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 1997, 31, 81.
The tropospheric degradation of volatile organic compounds: a protocol for mechanism development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVOnt78%3D&md5=fe6753086de6b8f92a573d636a18501aCAS |

[12]  R. G. Derwent, D. S. Stevenson, W. J. Collins, C. E. Johnson, Intercontinental transport and the origins of the ozone observed at surface sites in Europe. Atmos. Environ. 2004, 38, 1891.
Intercontinental transport and the origins of the ozone observed at surface sites in Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFCht7w%3D&md5=b591528c4432ec798cc772954e7e3907CAS |

[13]  R. G. Derwent, M. E. Jenkin, S. M. Saunders, M. J. Pilling, P. G. Simmonds, N. R. Passant, G. J. Dollard, P. Dumitrean, A. Kent, Photochemical ozone formation in north west Europe and its control. Atmos. Environ. 2003, 37, 1983.
Photochemical ozone formation in north west Europe and its control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVGgt7c%3D&md5=8280902e4375d754e27c54f9d95fb874CAS |

[14]  Q. Ying, J. Y. Li, Implementation and initial application of the near-explicit Master Chemical Mechanism in the 3D Community Multiscale Air Quality (CMAQ) model. Atmos. Environ. 2011, 45, 3244.
Implementation and initial application of the near-explicit Master Chemical Mechanism in the 3D Community Multiscale Air Quality (CMAQ) model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslWqsbo%3D&md5=319cdd01c6786784ea8b30c1313c0548CAS |

[15]  W. P. L. Carter, Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324.
Development of the SAPRC-07 chemical mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtLrO&md5=e847757af2f8a304b56efc31d9729c9fCAS |

[16]  M. W. Gery, G. Z. Whitten, J. P. Killus, M. C. Dodge, A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 1989, 94, 12925.
A photochemical kinetics mechanism for urban and regional scale computer modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFKrsL4%3D&md5=a25e6461dfd3fc71eb2a529016b7253eCAS |

[17]  G. Yarwood, S. Rao, M. Yocke, G. Z. Whitten, Updates to the Carbon Bond Mechanism: CB05, Final Report RT-04-00675 2005 (Yocke and Company). Available at http://www.camx.com/publ/pdfs/cb05_final_report_120805.aspx [Verified 3 June 2013].

[18]  A. W. Birdsall, J. F. Andreoni, M. J. Elrod, Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene. J. Phys. Chem. A 2010, 114, 10655.
Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhsb7E&md5=f3316d45047b7d067251facb08552d13CAS | 20836528PubMed |

[19]  G. Obermeyer, S. M. Aschmann, R. Atkinson, J. Arey, Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air. Atmos. Environ. 2009, 43, 3736.
Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKlurw%3D&md5=5083d185d5c79c1e6c963929ef2ebcf1CAS |

[20]  J. Noda, R. Volkamer, M. J. Molina, Dealkylation of alkylbenzenes: a significant pathway in the toluene, o-, m-, p-xylene plus OH reaction. J. Phys. Chem. A 2009, 113, 9658.
Dealkylation of alkylbenzenes: a significant pathway in the toluene, o-, m-, p-xylene plus OH reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFaks78%3D&md5=8e043aaccc979247ddf3df2d15408f3fCAS | 19658391PubMed |

[21]  C. Bloss, V. Wagner, A. Bonzanini, M. E. Jenkin, K. Wirtz, M. Martin-Reviejo, M. J. Pilling, Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data. Atmos. Chem. Phys. 2005, 5, 623.
Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtro%3D&md5=73eba404e4b35bb2f7bbd8a3cc23df78CAS |

[22]  X. Liu, H. E. Jeffries, K. G. Sexton, Atmospheric photochemical degradation of 1,4-unsaturated dicarbonyls. Environ. Sci. Technol. 1999, 33, 4212.
Atmospheric photochemical degradation of 1,4-unsaturated dicarbonyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsV2nu7k%3D&md5=93743800aef473d0ee1f58ed0a841127CAS |

[23]  A. K. Mollner, S. Valluvadasan, L. Feng, M. K. Sprague, M. Okumura, D. B. Milligan, W. J. Bloss, S. P. Sander, P. T. Martien, R. A. Harley, A. B. McCoy, W. P. L. Carter, Rate of gas phase association of hydroxyl radical and nitrogen dioxide. Science 2010, 330, 646.
Rate of gas phase association of hydroxyl radical and nitrogen dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaqt7nO&md5=1632ccffb9244392820c3a268f2f969cCAS | 21030650PubMed |

[24]  X. Liu, H. E. Jeffries, K. G. Sexton, Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene. Atmos. Environ. 1999, 33, 3005.
Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSrt7Y%3D&md5=f71b8f4acd67384ac25517ba5fcbdf65CAS |

[25]  S. J. White, M. Azzi, D. E. Angove, I. M. Jamie, Modelling the photooxidation of ULP, ES and E10 in the CSIRO smog chamber. Atmos. Environ. 2010, 44, 5375.
Modelling the photooxidation of ULP, ES and E10 in the CSIRO smog chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtLrL&md5=4b3d6ed18a68356673ddb6e3c797ba65CAS |

[26]  H. E. Jeffries, D. L. Fox, R. M. Kamens, outdoor smog chamber studies: light effects relative to indoor chambers. Environ. Sci. Technol. 1976, 10, 1006.
outdoor smog chamber studies: light effects relative to indoor chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvFCit78%3D&md5=9c2611a8b3f5ebaa8393a7d712d25ea0CAS |

[27]  H. E. Jeffries, K. G. Sexton, The relative ozone forming potential of methanol-fueled vehicle emissions and gasoline-fueled vehicle emissions in outdoor smog chambers, Final Report. ME-1 CRCP 1995 (Coordinating Research Council: Atlanta, GA). Available at http://www.ntis.gov/search/product.aspx?ABBR=PB93206902 [Verified 3 June 2013].

[28]  H. E. Jeffries, K. G. Sexton, T. Morris, M. Jackson, R. G. Goodman, R. M. Kamens, M. S. Holleman, Outdoor smog chamber experiments using automobile exhaust. Report number EPA/600/3–85/032 1985 (US Environmental Protection Agency: Research Triangle Park, NC).

[29]  H. Jeffries, UNC solar radiation models. Contract number: Technical Report CR813107, CR813964 and CR815779 1991 (US EPA).

[30]  H. Jeffries, I. Voicu, K. Sexton, Experimental tests of reactivity and re-evaluation of the carbon bond four photochemical reaction mechanism: Final report for Cooperative Agreement R828906 2002 (US EPA).

[31]  G. Z. Whitten, G. Heo, Y. Kimura, E. McDonald-Buller, D. T. Allen, W. P. L. Carter, G. Yarwood, A new condensed toluene mechanism for carbon bond CB05-TU. Atmos. Environ. 2010, 44, 5346.
A new condensed toluene mechanism for carbon bond CB05-TU.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtLrI&md5=db725265bcc6d3ac49e04a6210ab2b99CAS |

[32]  W. P. L. Carter, Development of a condensed SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5336.
Development of a condensed SAPRC-07 chemical mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtLrP&md5=8349ca9a7ff9d550750b81711beced41CAS |

[33]  C. Bloss, V. Wagner, M. E. Jenkin, R. Volkamer, W. J. Bloss, J. D. Lee, D. E. Heard, K. Wirtz, M. Martin-Reviejo, G. Rea, J. C. Wenger, M. J. Pilling, Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos. Chem. Phys. 2005, 5, 641.
Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtrs%3D&md5=cfca9a376e970cd5a081af5c9e6eb92aCAS |

[34]  J. P. Killus, G. Z. Whitten, Background reactivity in smog chambers. Int. J. Chem. Kinet. 1990, 22, 547.
Background reactivity in smog chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVGmsbg%3D&md5=2a4692bf7540bfd6d5a338ebd132e662CAS |

[35]  F. Rohrer, B. Bohn, T. Brauers, D. Bruning, F. J. Johnen, A. Wahner, J. Kleffmann, Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 2005, 5, 2189.
Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgs7jL&md5=eebbe7300bb828674e168db3908a5178CAS |

[36]  J. Zádor, T. Turányi, K. Wirtz, M. J. Pilling, Measurement and investigation of chamber radical sources in the European Photoreactor (EUPHORE). J. Atmos. Chem. 2006, 55, 147.
Measurement and investigation of chamber radical sources in the European Photoreactor (EUPHORE).Crossref | GoogleScholarGoogle Scholar |

[37]  W. P. L. Carter, Development of an improved chemical speciation database for processing emissions of volatile organic compounds for air quality models 2011. Available at http://www.engr.ucr.edu/~carter/emitdb/ [Verified 3 June 2013].

[38]  H. E. Jeffries, M. W. Gery, M. Kessler, K. G. Sexton, MComp/MEval: The Morphecule Reaction Mechanism Compiler/Solver, Development and Testing of a New Photochemical Reaction Mechanism 1998. Available at http://airsite.unc.edu/atmchemunc/morpho/ [Verified 3 June 2013].

[39]  H. E. Jeffries, M. W. Gery, W. P. L. Carter, Protocols for evaluating oxidant mechanisms for urban and regional models 1992 (US Environmental Protection Agency: Research Triangle Park, NC).

[40]  J. Arey, G. Obermeyer, S. M. Aschmann, S. Chattopadhyay, R. D. Cusick, R. Atkinson, Dicarbonyl products of the OH radical-initiated reaction of a series of aromatic hydrocarbons. Environ. Sci. Technol. 2009, 43, 683.
Dicarbonyl products of the OH radical-initiated reaction of a series of aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Oi&md5=9a06beb0d5a4ae09b9cfd2d361475d17CAS | 19245002PubMed |