Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Characterisation of influential mechanisms in the life cycle of fog: a study of two extreme events at airports in central-eastern Argentina

Melina Sol Yabra https://orcid.org/0000-0003-1614-778X A B C * , Matilde Nicolini A D E and Luciano Vidal B
+ Author Affiliations
- Author Affiliations

A Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Cc1428EGA, Buenos Aires, Argentina.

B Servicio Meteorológico Nacional, C1425GBE, Buenos Aires, Argentina.

C Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ, Buenos Aires, Argentina.

D Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET–UBA, C1428EGA, Buenos Aires, Argentina.

E Instituto Franco Argentino Sobre Estudios de Clima y Sus Impactos (IFAECI), Unité Mixte Internationale (UMI), Centre National de la Recherche Scientifique (CNRS)–CONICET–UBA, C1428EGA, Buenos Aires, Argentina.

* Correspondence to: myabra@smn.gob.ar

Handling Editor: Chris Lucas

Journal of Southern Hemisphere Earth Systems Science 75, ES25006 https://doi.org/10.1071/ES25006
Submitted: 6 February 2025  Accepted: 24 July 2025  Published: 29 August 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Bureau of Meteorology. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Reduced visibility due to fog is a major disruptor of global air traffic, leading to flight cancellations, delays and diversions. To enhance forecasting and mitigate these losses, a thorough understanding of the physical mechanisms governing the life cycle of fog is essential. This study aims to advance this understanding in Argentina, focusing on events where fog simultaneously affected the operations of several airports and, therefore, all the air traffic of the country. Two specific cases, one of extreme duration and one unexpected by forecasters, from different seasons, were analysed using aeronautical meteorological observations (Meteorological Terminal Aviation Report, METAR), radiosondes, Geostationary Operational Environmental Satellite-16 (GOES-16) satellite images and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5) reanalysis data. Satellite techniques for detecting low clouds and fog were particularly effective at night but had limitations in distinguishing between fog and low stratus. The study identified multiple mechanisms operating at various scales that contribute to fog formation and dissipation. Both events were characterised by frontal passages – cold in the summer and warm in the winter – accompanied by associated temperature and moisture advections. Various local factors, despite similar synoptic conditions, influenced boundary layer processes at smaller scales, resulting in distinct fog behaviour at each location. These findings highlight the complexity of fog forecasting, fog being driven by multiple interacting processes across different scales, as well as the constraints of current observational systems and numerical models.

Keywords: Argentina, atmospheric observation, aviation, ERA5, fog, forecasting, GOES-16, METAR, meteorology, PBL.

References

Amani M, Mahdavi S, Bullock T, Beale S (2019) Automatic nighttime sea fog detection using GOES-16 imagery. Atmospheric Research 238, 104712.
| Crossref | Google Scholar |

Andersen H, Cermak J, Fuchs J, Knippertz P, Gaetani M, Quinting J, Sippel S, Vogt R (2020) Synoptic-scale controls of fog and low-cloud variability in the Namib Desert. Atmospheric Chemistry and Physics 20, 3415-3438.
| Crossref | Google Scholar |

Baars JA, Witiw M, Al-Habash A (2003) Determining fog type in the Los Angeles basin using historic surface observation data. In ‘Proceedings 16th Conference on Probability and Statistics in the Atmospheric Sciences’, 12–17 January 2002, Orlando, FL, USA. J3.8. (American Meteorological Society: Long Beach, CA, USA) Available at https://ams.confex.com/ams/annual2002/webprogram/Paper29133.html

Baker R, Cramer J, Peters J (2002) Radiation Fog: UPS Airlines Conceptual Models and Forecast Methods. In ‘10th Conference on Aviation, Range, and Aerospace Meteorology’, 12–16 May 2002, Portland, OR, USA. 5.11. (American Meteorological Society) Available at https://ams.confex.com/ams/13ac10av/webprogram/Paper39165.html

Beal RL, Pu Z, Pardyjak E, Hoch S, Gultepe I (2024) Evaluation of near-surface and boundary-layer meteorological conditions that support cold-fog formation using cold fog amongst complex terrain field campaign observations. Quarterly Journal of the Royal Meteorological Society 150(764), 4329-4347.
| Crossref | Google Scholar |

Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. Part I: numerical model and sensitivity tests. Monthly Weather Review 122, 1218-1230.
| Crossref | Google Scholar |

Campetella C, Vera C (2002) The influence of the Andes Mountains on the South American low level flow. Geophysical Research Letters 29(17), 1826.
| Crossref | Google Scholar |

Cereceda P, Osses P, Larrain H, Farı́as M, Lagos M, Pinto R, Schemenauer RS (2002) Advective, orographic and radiation fog in the Tarapacá region, Chile. Atmospheric Research 64(1–4), 261-271.
| Crossref | Google Scholar |

Cermak J, Bendix J (2007) Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data: a feasibility study. Pure and Applied Geophysics 164, 1179-1192.
| Crossref | Google Scholar |

Croft PJ (2003) Fog. In ‘Encyclopedia of Atmospheric Sciences’. (Eds JR Holton, JA Curry, JA Pyle) pp. 777–792. (Academic Press)

Eyre JR, Brownscombe JL, Allam RJ (1984) Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteorology Magazine 113, 266-271.
| Google Scholar |

Gandhi A, Geresdi I, Gyöngyösi AZ, et al. (2024) An observational case study of a radiation fog event. Pure and Applied Geophysics 181, 2025-2049.
| Crossref | Google Scholar |

Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J (2007) Fog research: a review of past achievements and future perspectives. Journal of Pure and Applied Geophysics 164, 1121-1159.
| Crossref | Google Scholar |

Gultepe I, Pardyjak E, Hoch SWH, Fernando JS, Dorman C, Flagg DD, Krishnamurthy R, Wang Q, Gaberšek S, Creegan E, Scantland N, Desjardins S, Heidinger A, Pavolonis M, Heymsfield AJ (2021) Coastal-fog microphysics using in-situ observations and GOES-R retrievals. Boundary-Layer Meteorology 181, 203-226.
| Crossref | Google Scholar |

Guo L, Guo X, Luan T, Zhu S, Lyu K (2021) Radiative effects of clouds and fog on long-lasting heavy fog events in northern China. Atmospheric Research 252, 105444.
| Crossref | Google Scholar |

Haeffelin M, Dupont J-C, Boyouk N, Baumgardner D, Gomes L, Roberts G, Elias T (2013) A comparative study of radiation fog and quasi-fog formation processes during the Paris Fog Field Experiment 2007. Pure and Applied Geophysics 170(12), 2283-2303.
| Crossref | Google Scholar |

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányí A, Munoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Holm E, Janiskova M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thepaut J (2020) The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999-2049.
| Crossref | Google Scholar |

Hu H, Huang F, Zhang S, et al. (2019) Case study of fog predictability for an event with cold-front synoptic pattern. Journal of Ocean University of China 18, 271-281.
| Crossref | Google Scholar |

International Civil Aviation Organization (2016) Annex 3 to the Convention on International Civil Aviation: Meteorological Service for International Air Navigation. (ICAO) Available at https://library.wmo.int/idurl/4/49391

International Civil Aviation Organization (2023) ‘European guidance material on all weather operations at aerodromes.’ (European Aviation System Planning Group November 2023)

Keim-Vera K, Lobos-Roco F, Aguirre I, Merino C, del Río C (2024) Fog types frequency and their collectable water potential in the Atacama Desert. Atmospheric Research 312, 107747.
| Crossref | Google Scholar |

Lakra K, Avishek K (2022) A review on factors influencing fog formation, classification, forecasting, detection and impacts. Rendiconti Lincei. Scienze Fisiche e Naturali 33, 319-353.
| Crossref | Google Scholar | PubMed |

Lapido B (2019) Estudio preliminar de nieblas en el aeropuerto de la ciudad de Rosario. BSc thesis, Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. [In Spanish]

Li Y, Aemisegger F, Riedl A, Buchmann N, Eugster W (2021) The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe. Hydrology and Earth System Sciences 25, 2617-2648.
| Crossref | Google Scholar |

Li Y, Eugster W, Riedl A, Westerhuis S, Buchmann N, Aemisegger F (2023) Identifying key stages of radiation fog evolution using water vapor isotopes. Agricultural and Forest Meteorology 334, 109430.
| Crossref | Google Scholar |

Lin D, Katurji M, Revell LE, Khan B, Osborne N, Soltanzadeh I, Kremser S (2022) Fog-type classification using a modified Richardson number for Christchurch, New Zealand. International Journal of Climatology 43, 314-330.
| Crossref | Google Scholar |

Liu DY, Yan WL, Yang J, Yang J, Pu MJ, Niu SJ, Li ZH (2016) A study of the physical processes of an advection fog boundary layer. Boundary-Layer Meteorology 158, 125-138.
| Crossref | Google Scholar |

Maronga B, Bosveld FC (2017) Key parameters for the life cycle of nocturnal radiation fog: a comprehensive large‐eddy simulation study. Quarterly Journal of the Royal Meteorological Society 143(707), 2463-2480.
| Crossref | Google Scholar |

Meyer MB, Lala GG (1990) Climatological aspects of radiation fog occurrence at Albany, New York. Journal of Climate 3, 577-586.
| Crossref | Google Scholar |

Petterssen S (1969) ‘Introduction to Meteorology’, 3rd edn. (McGraw-Hill: New York, NY, USA)

Pilie RJ, Mack EJ, Kocmond WC, Rogers CW, Eadie WJ (1975) The life cycle of valley fog. Part I: micrometeorological characteristics. Journal of Applied Meteorology 14, 347-363.
| Crossref | Google Scholar |

Pilié RJ, Mack EJ, Rogers CW, Katz U, Kocmond WC (1979) The formation of marine fog and the development of fog–stratus systems along the California coast. Journal of Applied Meteorology 18, 1275-1286.
| Crossref | Google Scholar |

Price JD, Lane S, Boutle IA, Smith DKE, Bergot T, Lac C, Duconge L, McGregor J, Kerr-Munslow A, Pickering M, Clark R (2018) LANFEX: a field and modeling study to improve our understanding and forecasting of radiation fog. Bulletin of the American Meteorological Society 99(10), 2061-2077.
| Crossref | Google Scholar |

Price J, Porson A, Lock A (2015) An observational case study of persistent fog and comparison with an ensemble forecast model. Boundary-Layer Meteorology 155, 301-327.
| Crossref | Google Scholar |

Roach WT (1995a) Back to basics: fog: part 2 – the formation and dissipation of land fog. Weather 50, 7-11.
| Crossref | Google Scholar |

Roach WT (1995b) Back to basics: fog: part 3 – the formation and dissipation of sea fog. Weather 50, 80-84.
| Crossref | Google Scholar |

Roach WT, Brown R, Caughey R, Garland SJ, Readings CJ (1976) The physics of radiation fog: I – a field study. Quarterly Journal of the Royal Meteorological Society 102, 313-333.
| Crossref | Google Scholar |

Rodriguez E, Morris CS, Belz JE, Chapin E, Martin J, Daffer W, Hensley S (2005) An assessment of the SRTM topographic products. Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, CA, USA.

Ruiz J, Schonholz T, Saulo C (2018) Generación de pronósticos probabilísticos de visibilidad a partir de pronósticos numéricos retrospectivos y observaciones. Visibility probabilistic forecasts based on numerical retrospective forecasts and observations. Meteorologica 43, 73-96 Available at http://www.meteorologica.org.ar/wp-content/uploads/2018/07/Ruiz_y-otros_Vol43N1.pdf [In Spanish with title, abstract and keywords in Spanish and English].
| Google Scholar |

Schonholz T (2015) Desarrollo de una técnica objetiva para la generación de pronósticos probabilísticos de umbrales de visibilidad empleando pronósticos retrospectivos en la estación Ezeiza. BSc thesis, Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. [In Spanish]

Schmit TJ, Griffith P, Gunshor MM, Daniels JM, Goodman SJ, Lebair WJ (2017) A closer look at the ABI on the GOES-R series. Bulletin of the American Meteorological Society 98, 681-698.
| Crossref | Google Scholar |

Seluchi ME, Saulo AC, Nicolini M, Satyamurty P (2003) The northwestern Argentinean low: a study of two typical events. Monthly Weather Review 131, 2361-2378.
| Crossref | Google Scholar |

Tardif R, Rasmussen RM (2007) Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology and Climatology 46, 1141-1168.
| Crossref | Google Scholar |

Taylor GI (1917) The formation of fog and mist. Quarterly Journal of the Royal Meteorological Society 43, 241-268.
| Crossref | Google Scholar |

Vasques Ferro R, Ribero C (2015) Formación de nieblas en aeroparque Jorge Newbery. In ‘XII Congreso Argentino de Meteorología’, 26–29 May 2015, Mar del Plata, Argentina. (Servicio Meteorológico Nacional: Buenos Aires, Argentina) Available at http://repositorio.smn.gob.ar/handle/20.500.12160/857 [Abstract, in Spanish and English]

Weedon GP, Osborne SR, Best MJ (2024) Dew, frost, fog and lifted temperature minima: observations in southern England and implications for modelling. Quarterly Journal of the Royal Meteorological Society 150(761), 2168-2184.
| Crossref | Google Scholar |

World Meteorological Organization (1966) ‘International Meteorological Vocabulary.’ (WMO: Geneva, Switzerland)

Yabra MS, de Elia R, Vidal L, Nicolini M (2021a) Estudio climatológico de visibilidad reducida por nieblas y neblinas en aeropuertos argentinos. Nota Técnica SMN 2021-116. Available at http://hdl.handle.net/20.500.12160/1698

Yabra MS, de Elia R, Vidal L, Nicolini M, Vasques Ferro R, Ribero C, Chiaparri L, Fernández E, Campetella C, Bonfili O, Ceballos M, Barrera G, Troche N, López V, Schizzano M, Bentancor N, Berengua L, Steven M (2021b) Las nieblas en los aeropuertos argentinos: revisión de literatura y perspectiva de los pronosticadores. Nota Técnica SMN 2021-89. (Servicio Meteorológico Nacional: Buenos Aires, Argentina) Available at http://repositorio.smn.gob.ar/handle/20.500.12160/1540 [In Spanish with abstract in Spanish and English]

Yabra MS, Nicolini M, Borque P, Skabar YG, Salio P (2022) Observational study of the South American low-level jet during the SALLJEX. International Journal of Climatology 42(16), 9676-9696.
| Crossref | Google Scholar |

Yabra MS, de Elia R, Vidal L, Nicolini M (2023) Estudio climatológico de nieblas en aeropuertos argentinos. Fog climatology in Argentina’s airports. Meteorologica 48(1), e020 [In Spanish with title, abstract and keywords in Spanish and English].
| Crossref | Google Scholar |

Yabra MS, de Elía R, Vidal L, Nicolini M (2024) Intercomparison between METAR- and SYNOP-based fog climatologies. Pure and Applied Geophysics 181, 1337-1361.
| Crossref | Google Scholar |

Yabra MS, de Elía R, Vidal L, Nicolini M (2025) Observational characterization of fog events over the main Argentine airports. International Journal of Climatology e8858.
| Crossref | Google Scholar |

Zhao L, Wang W, Hao T, Qu W, Sheng L, Luo C, An X, Zhou Y (2020) The autumn haze–fog episode enhanced by the transport of dust aerosols in the Tianjin area. Atmospheric Environment 237, 117669.
| Crossref | Google Scholar |