Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

The importance of a constructed near-nature-like Danube fish by-pass as a lifecycle fish habitat for spawning, nurseries, growing and feeding: a long-term view with remarks on management

Paul Meulenbroek A C , Silke Drexler A , Christoffer Nagel B , Michael Geistler A and Herwig Waidbacher A
+ Author Affiliations
- Author Affiliations

A University of Natural Resources and Life Sciences, Vienna, Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Strasse 33, A-1180 Vienna, Austria.

B Technical University of Munich, Department for Ecology and Ecosystem Management, Chair of Aquatic Systems Biology, Mühlenweg 22, D-85354 Freising, Germany.

C Corresponding author. Email: paul.meulenbroek@boku.ac.at

Marine and Freshwater Research 69(12) 1857-1869 https://doi.org/10.1071/MF18121
Submitted: 26 March 2018  Accepted: 2 August 2018   Published: 17 October 2018

Journal Compilation © CSIRO 2018 Open Access CC BY-NC-ND

Abstract

Major sections of today’s rivers are man made and do not provide the essential requirements for riverine fish. A nature-like fish by-pass system in Vienna-Freudenau was assessed for its function as a fish habitat. The study was conducted continuously over 3 years; 15 years after construction of the by-pass. The chosen nature-like construction of the by-pass system functions like natural tributaries. More than 17 000 fish and 43 species, including several protected and endangered species, in all life stages, including eggs, larvae, juveniles and adults, were captured. Furthermore, the indicator species of the free-flowing Danube, nase (Chondrostoma nasus) and barbel (Barbus barbus), migrated into the fish by-pass and successfully spawned before returning. Therefore, our results suggest that by-pass systems can function as an important habitat for the conservation of native fish fauna. The heterogenic habitat configuration provides conditions for all ecological guilds and, consequently, increases biodiversity. Finally, approved management tools are discussed. We suggest that fish by-pass channels may be suitable at other sites in the Danube catchment.

Additional keywords: Barbus barbus, by-pass management, Chondrostoma nasus, cyprinids, large river.


References

Ahnelt, H., Banarescu, P., Spolwind, R., Harka, A., and Waidbacher, H. (1998). Occurrence and distribution of three gobiid species (Pisces, Gobiidae) in the middle and upper Danube region: examples of different dispersal patterns? Biologia-Bratislava 53, 665–678.

Allan, J. D., and Flecker, A. S. (1993). Biodiversity conservation in running waters. Bioscience 43, 32–43.
Biodiversity conservation in running waters.Crossref | GoogleScholarGoogle Scholar |

Aparicio, E., García‐Berthou, E., Araguas, R., Martínez, P., and García‐Marín, J. (2005). Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams. Journal of Fish Biology 67, 931–949.
Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams.Crossref | GoogleScholarGoogle Scholar |

Arndt, R. E., Routledge, M. D., Wagner, E. J., and Mellenthin, R. F. (2001). Influence of raceway substrate and design on fin erosion and hatchery performance of rainbow trout. North American Journal of Aquaculture 63, 312–320.
Influence of raceway substrate and design on fin erosion and hatchery performance of rainbow trout.Crossref | GoogleScholarGoogle Scholar |

Baldwin, C. C., Mounts, J. H., Smith, D. G., and Weigt, L. A. (2009). Genetic identification and colour descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa 2008, 1–22.

Balon, E. K. (1990). Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. Guelph Ichthyology Reviews 1, 1–22.

Barlaup, B. T., Gabrielsen, S. E., Skoglund, H., and Wiers, T. (2008). Addition of spawning gravel: a means to restore spawning habitat of Atlantic salmon (Salmo salar L.), and anadromous and resident brown trout (Salmo trutta L.) in regulated rivers. River Research and Applications 24, 543–550.
Addition of spawning gravel: a means to restore spawning habitat of Atlantic salmon (Salmo salar L.), and anadromous and resident brown trout (Salmo trutta L.) in regulated rivers.Crossref | GoogleScholarGoogle Scholar |

Borcherding, J., Dolina, M., Heermann, L., Knutzen, P., Krüger, S., Matern, S., van Treeck, R., and Gertzen, S. (2013). Feeding and niche differentiation in three invasive gobies in the Lower Rhine, Germany. Limnologica-Ecology and Management of Inland Waters 43, 49–58.
Feeding and niche differentiation in three invasive gobies in the Lower Rhine, Germany.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J. (2007). Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52, 632–650.
Hyporheic rehabilitation in rivers: restoring vertical connectivity.Crossref | GoogleScholarGoogle Scholar |

Brandner, J., Auerswald, K., Schäufele, R., Cerwenka, A. F., and Geist, J. (2015). Isotope evidence for preferential dispersal of fast-spreading invasive gobies along man-made river bank structures. Isotopes in Environmental and Health Studies 51, 80–92.
Isotope evidence for preferential dispersal of fast-spreading invasive gobies along man-made river bank structures.Crossref | GoogleScholarGoogle Scholar |

Calles, E., and Greenberg, L. (2007). The use of two nature‐like fishways by some fish species in the Swedish River Emån. Ecology Freshwater Fish 16, 183–190.

Copp, G. H., and Peňáz, M. (1988). Ecology of fish spawning and nursery zones in the flood plain, using a new sampling approach. Hydrobiologia 169, 209–224.
Ecology of fish spawning and nursery zones in the flood plain, using a new sampling approach.Crossref | GoogleScholarGoogle Scholar |

Crook, D., and Robertson, A. (1999). Relationships between riverine fish and woody debris: implications for lowland rivers. Marine and Freshwater Research 50, 941–953.
Relationships between riverine fish and woody debris: implications for lowland rivers.Crossref | GoogleScholarGoogle Scholar |

Cunjak, R. A. (1996). Winter habitat of selected stream fishes and potential impacts from land-use activity. Canadian Journal of Fisheries and Aquatic Sciences 53, 267–282.
Winter habitat of selected stream fishes and potential impacts from land-use activity.Crossref | GoogleScholarGoogle Scholar |

Dole-Olivier, M.-J. (2011). The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Marine and Freshwater Research 62, 1281–1302.
The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects.Crossref | GoogleScholarGoogle Scholar |

Dossi, F., Leitner, P., Pauls, S., and Graf, W. (2018). In the mood for wood-habitat specific colonization patterns of benthic invertebrate communities along the longitudinal gradient of an Austrian river. Hydrobiologia 805, 245–258.
In the mood for wood-habitat specific colonization patterns of benthic invertebrate communities along the longitudinal gradient of an Austrian river.Crossref | GoogleScholarGoogle Scholar |

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., and Stiassny, M. L. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
Freshwater biodiversity: importance, threats, status and conservation challenges.Crossref | GoogleScholarGoogle Scholar |

Dufrêne, M., and Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.

Eberstaller, J., Hinterhofer, M., and Parasiewicz, P. (1998). The effectiveness of two nature-like bypass channels in an upland Austrian river. In ‘Fish Migration and Fish Bypasses’. (Eds M. Jungwirth, S. Schmutz, and S. Weiss.) pp. 363–383. (Fishing News Books: Oxford, UK.)

Eberstaller, J., Pinka, P., and Honsowitz, H. (2001). Fischaufstiegshilfe Donaukraftwerk Freudenau Forschung im Verbund, Schriftenreihe 72, 177–196.

European Parliament and the Council of the European Union (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy as amended by Decision 2455/2001/EC and Directives 2008/32/EC, 2008/105/EC and 2009/31/EC. Available at https://eur-lex.europa.eu/eli/dir/2000/60/2014-01-01 [Verified 4 September 2018].

Food and Agriculture Organization of the United Nations and the Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (2002) Fish passes – design, dimensions, and monitoring. (FAO and DVWK: Rome, Italy.)

Garcia, X.-F., Schnauder, I., and Pusch, M. (2012). Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers. Hydrobiologia 685, 49–68.
Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers.Crossref | GoogleScholarGoogle Scholar |

Geist, J., and Hawkins, S. J. (2016). Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquatic Conservation 26, 942–962.
Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges.Crossref | GoogleScholarGoogle Scholar |

Gewässerbewirtschaftungsplan, N. (2009). NGP 2009. Available at https://www.bmnt.gv.at/wasser/wasser-oesterreich/plan_gewaesser_ngp/nationaler_gewaesserbewirtschaftungsplan-ngp/ngp2009.html [Verified 4 September 2018].

Gewässerbewirtschaftungsplan, N. (2015). NGP 2015. Available at https://www.bmnt.gv.at/wasser/wisa/fachinformation/ngp/ngp-2015/text/textdokument_ngp2015.html [Verified 4 September 2018].

Gorman, O. T., and Karr, J. R. (1978). Habitat structure and stream fish communities. Ecology 59, 507–515.
Habitat structure and stream fish communities.Crossref | GoogleScholarGoogle Scholar |

Gustafsson, S., Österling, M., Skurdal, J., Schneider, L. D., and Calles, O. (2013). Macroinvertebrate colonization of a nature-like fishway: the effects of adding habitat heterogeneity. Ecological Engineering 61, 345–353.
Macroinvertebrate colonization of a nature-like fishway: the effects of adding habitat heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Hagel, T., and Westermayr, W. (2016). Räumliche Veränderung der FAH Freudenau 15 Jahre nach Einstau. M.Sc. Thesis, Institut für Hydrobiologie, Gewässermanagement (IHG), BOKU-Universität für Bodenkultur, Vienna, Austria.

Harreiter, H., Frik, G., Schmalfuß, R., and Reckendorfer, W. (2015). Implementation of the EU Water Framework Directive at the Danube River in Austria: experiences and perspectives. Wasserwirtschaft 105, 14–19.
Implementation of the EU Water Framework Directive at the Danube River in Austria: experiences and perspectives.Crossref | GoogleScholarGoogle Scholar |

Hauer, C., Unfer, G., Schmutz, S., and Habersack, H. (2007). The importance of morphodynamic processes at riffles used as spawning grounds during the incubation time of nase (Chondrostoma nasus). Hydrobiologia 579, 15–27.
The importance of morphodynamic processes at riffles used as spawning grounds during the incubation time of nase (Chondrostoma nasus).Crossref | GoogleScholarGoogle Scholar |

Haunschmid, R., Wolfram, G., Spindler, T., Honsig-Erlenburg, W., Wimmer, R., Jagsch, A., Kainz, E., Hehenwarter, K., Wagner, B., and Konecny, R. (2006). ‘Erstellung einer fischbasierten Typologie österreichischer Fließgewässer sowie einer Bewertungsmethode des fischökologischen Zustandes gemäß EU – Wasserrahmenrichtlinie’ (Bundesamt für Wasserwirtschaft: Vienna, Austria.)

Haunschmid, R., Schotzko, N., Petz-Glechner, R., Honsig-Erlenburg, W., Schmutz, S., Spindler, T., Unfer, G., Graf, W., Bammer, V., and Hundritsch, L. (2010). ‘Leitfaden zur Erhebung der Biologischen Qualitätselemente Teil A1: Fische.’ (Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria.)

Hebert, P. D., Cywinska, A., and Ball, S. L. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London – B. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Hohensinner, S., Sonnlechner, C., Schmid, M., and Winiwarter, V. (2013). Two steps back, one step forward: reconstructing the dynamic Danube riverscape under human influence in Vienna. Water History 5, 121–143.
Two steps back, one step forward: reconstructing the dynamic Danube riverscape under human influence in Vienna.Crossref | GoogleScholarGoogle Scholar |

Jungwirth, M., Schmutz, S., and Weiss, S. (1998). ‘Fish Migration and Fish Bypasses.’ (Fishing News Books: Oxford, UK.)

Jungwirth, M., Haidvogel, G., Moog, O., Muhar, S., and Schmutz, S. (2003). ‘Angewandte Fischökologie an Fließgewässern.’ (Facultas Universitätsverlag: Vienna, Austria.)

Jungwirth, M., Haidvogel, G., Hohensinner, S., Waidbacher, H., and Zauner, G. (2014). ‘Österreichs Donau.’ (Landschaft–Fisch–Geschichte. Institut für Hydrobiologie und Gewässermanagement, BOKU: Vienna, Austria.)

Karr, J. R., Toth, L. A., and Dudley, D. R. (1985). Fish communities of midwestern rivers: a history of degradation. Bioscience 35, 90–95.
Fish communities of midwestern rivers: a history of degradation.Crossref | GoogleScholarGoogle Scholar |

Keckeis, H. (2001). Influence of river morphology and current velocity conditions on spawning site selection of Chondrostoma nasus (L.). Archiv für Hydrobiologie – Large Rivers 12, 341–356.

Keckeis, H., and Schiemer, F. (2002). ‘Understanding Conservation Issues of the Danube River. Fishery Science: the Unique Contribution of Early Life Stages.’ (Blackwell Publishing: Oxford. UK.)

Kotlík, P., Markova, S., Choleva, L., Bogutskaya, N. G., Ekmekcl, F. G., and Ivanova, P. P. (2008). Divergence with gene flow between Ponto‐Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography. Molecular Ecology 17, 1076–1088.
Divergence with gene flow between Ponto‐Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography.Crossref | GoogleScholarGoogle Scholar |

Kottelat, M., and Freyhof, J. R. (2007). ‘Handbook of European Freshwater Fishes.’ (Publications Kottelat: Delémont, Switzerland.)

Kreps, H. (1975). ‘Praktische Arbeit in der Hydrographie.’ (Bundesministerium für Land- und Forstwirtschaft: Vienna, Austria.)

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27.
Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Crossref | GoogleScholarGoogle Scholar |

Lechner, A., Schuldermann, E., Keckeis, H., Humphries, P., and Tritthart, M. (2010). Jungfischdrift in der österreichischen Donau: taxonomische Zusammensetzung, Entwicklungsstadien und Driftdichte. Oesterreichs Fischerei 63, 96–100.

Lechner, A., Keckeis, H., Schludermann, E., Loisl, F., Humphries, P., Glas, M., Tritthart, M., and Habersack, H. (2014). Shoreline configurations affect dispersal patterns of fish larvae in a large river. ICES Journal of Marine Science 71, 930–942.
Shoreline configurations affect dispersal patterns of fish larvae in a large river.Crossref | GoogleScholarGoogle Scholar |

Melcher, A. H., and Schmutz, S. (2010). The importance of structural features for spawning habitat of nase Chondrostoma nasus (L.) and barbel Barbus barbus (L.) in a pre-Alpine river. River Systems 19, 33–42.
The importance of structural features for spawning habitat of nase Chondrostoma nasus (L.) and barbel Barbus barbus (L.) in a pre-Alpine river.Crossref | GoogleScholarGoogle Scholar |

Meulenbroek, P., Drexler, S., Rauch, P., Stauffer, C., Huemer, D., Gruber, S., Zwettler, M., Zirgoi, S., Krumboeck, S., Waidbacher, V., and Waidbacher, H. (2018). Species-specific fish larvae drift in anthropogenically constructed riparian zones on the Vienna impoundment of the River Danube, Austria: species occurrence, frequencies and seasonal patterns based on DNA Barcoding. River Research and Applications 34, 854–862.
Species-specific fish larvae drift in anthropogenically constructed riparian zones on the Vienna impoundment of the River Danube, Austria: species occurrence, frequencies and seasonal patterns based on DNA Barcoding.Crossref | GoogleScholarGoogle Scholar |

Mills, S. C., and Reynolds, J. D. (2003). Operational sex ratio and alternative reproductive behaviours in the European bitterling, Rhodeus sericeus. Behavioral Ecology and Sociobiology 54, 98–104.

Morley, S. A., and Karr, J. R. (2002). Assessing and restoring the health of urban streams in the Puget Sound basin. Conservation Biology 16, 1498–1509.
Assessing and restoring the health of urban streams in the Puget Sound basin.Crossref | GoogleScholarGoogle Scholar |

Niederösterreich, L. (2018). Wasserstandnachrichten Korneuburg. 2018. (Österreichische Wasserstraßen-Gesellschaft mbH. und der Verbund Hydro Power AG.) Available at http://www.noel.gv.at/wasserstand/static/stations/207241P/station.html [Verified 4 September 2018].

Northcote, T. (1984). Mechanisms of fish migration in rivers. In ‘Mechanisms of Migration in Fishes’. (Eds J. D. McCleave, J. J. Dodson, and W. H. Neill.) pp. 317–355. (Plenum: New York, NY, USA.)

Önorm-6232 (1995) ‘6232 (Austrian Standards): Guidelines for the Ecological Study and Assessment of Rivers.’ pp. 1–38. (Österreichisches Normungsinstitut: Vienna, Austria.)

Ovidio, M., and Philippart, J.-C. (2008). Movement patterns and spawning activity of individual nase Chondrostoma nasus (L.) in flow‐regulated and weir‐fragmented rivers. Journal of Applied Ichthyology 24, 256–262.
Movement patterns and spawning activity of individual nase Chondrostoma nasus (L.) in flow‐regulated and weir‐fragmented rivers.Crossref | GoogleScholarGoogle Scholar |

Pander, J., and Geist, J. (2010). Seasonal and spatial bank habitat use by fish in highly altered rivers: a comparison of four different restoration measures. Ecology Freshwater Fish 19, 127–138.
Seasonal and spatial bank habitat use by fish in highly altered rivers: a comparison of four different restoration measures.Crossref | GoogleScholarGoogle Scholar |

Pander, J., and Geist, J. (2016). Can fish habitat restoration for rheophilic species in highly modified rivers be sustainable in the long run? Ecological Engineering 88, 28–38.
Can fish habitat restoration for rheophilic species in highly modified rivers be sustainable in the long run?Crossref | GoogleScholarGoogle Scholar |

Pander, J., Mueller, M., and Geist, J. (2013). Ecological functions of fish bypass channels in streams: migration corridor and habitat for rheophilic species. River Research and Applications 29, 441–450.
Ecological functions of fish bypass channels in streams: migration corridor and habitat for rheophilic species.Crossref | GoogleScholarGoogle Scholar |

Parasiewicz, P., Eberstaller, J., Weiss, S., and Schmutz, S. (1998). Fish migration and fish bypasses. In ‘Conceptual Guidelines for Nature-like Bypass Channels’. (Eds M. Jungwirth, S. Schmutz, and S. Weiss.) pp. 348–362. (Fishing News Books: Oxford, UK.)

Pavlov, S. (1994). The downstream migration of young fishes in rivers: mechanisms and distribution. Folia Zoologica-UZPI 43, 193–208.
The downstream migration of young fishes in rivers: mechanisms and distribution.Crossref | GoogleScholarGoogle Scholar |

Plaut, I. (2001). Critical swimming speed: its ecological relevance. Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 131, 41–50.
Critical swimming speed: its ecological relevance.Crossref | GoogleScholarGoogle Scholar |

Pulg, U., Barlaup, B. T., Sternecker, K., Trepl, L., and Unfer, G. (2013). Restoration of spawning habitats of brown trout (Salmo trutta) in a regulated chalk stream. River Research and Applications 29, 172–182.
Restoration of spawning habitats of brown trout (Salmo trutta) in a regulated chalk stream.Crossref | GoogleScholarGoogle Scholar |

Quigley, J. T., and Harper, D. J. (2006). Effectiveness of fish habitat compensation in Canada in achieving no net loss. Environmental Management 37, 351–366.
Effectiveness of fish habitat compensation in Canada in achieving no net loss.Crossref | GoogleScholarGoogle Scholar |

Raleigh, R. F., Zuckerman, L. D., and Nelson, P. C. (1984). ‘Habitat Suitability Index Models and Instream Flow Suitability Curves: Brown Trout.’ (US Fish and Wildlife Service: Washington, DC, USA.)

Ramler, D., Ahnelt, H., Nemeschkal, H., and Keckeis, H. (2016). The drift of early life stages of Percidae and Gobiidae (Pisces: Teleostei) in a free-flowing section of the Austrian Danube. Hydrobiologia 781, 199–216.
The drift of early life stages of Percidae and Gobiidae (Pisces: Teleostei) in a free-flowing section of the Austrian Danube.Crossref | GoogleScholarGoogle Scholar |

Reichard, M., and Jurajda, P. (2007). Seasonal dynamics and age structure of drifting cyprinid fishes: an interspecific comparison. Ecology Freshwater Fish 16, 482–492.
Seasonal dynamics and age structure of drifting cyprinid fishes: an interspecific comparison.Crossref | GoogleScholarGoogle Scholar |

Renner, R. (2012). Donaukraftwerk Freudenau – Umgehungsgerinne mit Fischaufstieg – Vorläufige Betriebsordnung. Verbund AG, Vienna, Austria.

Reyjol, Y., Argillier, C., Bonne, W., Borja, A., Buijse, A. D., Cardoso, A. C., Daufresne, M., Kernan, M., Ferreira, M. T., and Poikane, S. (2014). Assessing the ecological status in the context of the European Water Framework Directive: where do we go now? The Science of the Total Environment 497–498, 332–344.
Assessing the ecological status in the context of the European Water Framework Directive: where do we go now?Crossref | GoogleScholarGoogle Scholar |

Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation Biology 10, 1163–1174.
A method for assessing hydrologic alteration within ecosystems.Crossref | GoogleScholarGoogle Scholar |

Richtlinie-92/43/EWG (1992). Richtlinie 92/43/EWG des rates vom 21. Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen. Amtsblatt der Europäischen Gemeinschaften, Reihe L. 206, 7–50.

Ricklefs, R. E., and Schluter, D. (1993). Species diversity: regional and historical influences. Species Diversity in Ecological Communities 3, 50–363.

Sachs, L. (2004). Weitere Prüfverfahren. In ‘Angewandte Statistik’. (Ed. L. Sachs.) pp. 404–489. (Springer: Berlin, Germany.)

Schiemer, F. (2000). Fish as indicators for the assessment of the ecological integrity of large rivers. Hydrobiologia 422, 271–278. https://doi.org/10.1023/A:1017086703551

Schiemer, F., and Spindler, T. (1989). Endangered fish species of the Danube River in Austria. Regulated Rivers: Research and Management 4, 397–407.
Endangered fish species of the Danube River in Austria.Crossref | GoogleScholarGoogle Scholar |

Schiemer, F., and Waidbacher, H. (1992). Strategies for conservation of a Danubian fish fauna. River Conservation and Management 26, 363–382.

Schlosser, I. J. (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia 303, 71–81.
Critical landscape attributes that influence fish population dynamics in headwater streams.Crossref | GoogleScholarGoogle Scholar |

Schmutz, S. (2012). ‘Was Bringt die Durchgängigkeit für den Guten Zustand? ÖWAV – Tagung Fischaufstiegshilfen: Neue Anforderungen und Erfahrungen aus der Praxis. 5.10.2012.’ (ÖWAV: Vienna, Austria.)

Tamario, C., Degerman, E., Donadi, S., Spjut, D., and Sandin, L. (2018). Nature‐like fishways as compensatory lotic habitats. River Research and Applications 34, 253–261.
Nature‐like fishways as compensatory lotic habitats.Crossref | GoogleScholarGoogle Scholar |

Tummers, J. S., Hudson, S., and Lucas, M. C. (2016). Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach. The Science of the Total Environment 569–570, 850–860.
Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach.Crossref | GoogleScholarGoogle Scholar |

Waidbacher, H., Drexler, S., and Meulenbroek, P. (2016). ‘Donau–Stauraum Freudenau; Ökosystem-Response 15 Jahre nach Einstau, Fachbereiche Fischökologie, Limnologie sowie Ausgewählte Begleitdisziplinen.’ (Universität für Bodenkultur: Vienna, Austria.)

Waidbacher, H., Drexler, S.-S., and Meulenbroek, P. (2018). Danube under pressure: hydropower rules the fish. In ‘Riverine Ecosystem Management’. (Eds S. Schmutz and J. Sendzimir.) pp. 473–489. (Springer: Cham, Switzerland.)

Wiesner, C., and Zauner, G. (1999). ‘Bestimmungsschlüssel für heimische Fisch-und Neunaugenarten.’ (Abt. f. Hydrobiologie, Fischereiwirtschaft und Aquakultur, Universität für Bodenkultur: Vienna, Austria.)

Wolfram, G., and Mikschi, E. (2007). Rote liste der fische (Pisces) Österreichs, In ‘Rote Listen gefährdeter Tiere Österreichs: Checklisten, Gefährdungsanalysen, Handlungsbedarf. Teil 2. Grüne Reihe des Lebensministeriums Band 14/2’. (Ed. K. P. Zulka.) pp. 61–198. (Böhlau-Verlag: Vienna, Austria.)

Zauner, G., and Eberstaller, J. (1999). Klassifizierungsschema der österreichischen Flußfischfauna in bezug auf deren Lebensraumansprüche. Oesterreichs Fischerei 52, 198–205.

Zauner, G., Jung, M., Ratschan, C., and Mühlbauer, M. (2016). Ökologische Sanierung von Fließstrecken und Stauhaltungen der österreichischen Donau: auf dem Weg zur Zielerreichung nach Wasserrahmenrichtlinie. Österreichische Wasser-und Abfallwirtschaft 68, 503–518.
Ökologische Sanierung von Fließstrecken und Stauhaltungen der österreichischen Donau: auf dem Weg zur Zielerreichung nach Wasserrahmenrichtlinie.Crossref | GoogleScholarGoogle Scholar |